AoPS Community

Bulgaria Team Selection Test 2003

www.artofproblemsolving.com/community/c3521
by augustin_p, subham1729

- Day 1

1 Cut 2003 disjoint rectangles from an acute-angled triangle $A B C$, such that any of them has a parallel side to $A B$ and the sum of their areas is maximal.

2 Find all $f: R-R$ such that $f\left(x^{2}+y+f(y)\right)=2 y+f(x)^{2}$
3 Some of the vertices of a convex n-gon are connected by segments, such that any two of them have no common interior point. Prove that, for any n points in general position, there exists a one-to-one correspondence between the points and the vertices of the n gon, such that any two segments between the points, corresponding to the respective segments from the n gon, have no common interior point.

- \quad Day 2

4 Is it true that for any permulation $a_{1}, a_{2} \ldots \ldots, a_{2002}$ of $1,2 \ldots, 2002$ there are positive integers m, n of the same parity such that $0<m<n<2003$ and $a_{m}+a_{n}=2 a_{\frac{m+n}{2}}$

5 Let $A B C D$ be a circumscribed quadrilateral and let P be the orthogonal projection of its in center on $A C$.
Prove that $\angle A P B=\angle A P D$
$6 \quad$ In natural numbers m, n Solve : $n(n+1)(n+2)(n+3)=m(m+1)^{2}(m+2)^{3}(m+3)^{4}$

