Art of Problem Solving

AoPS Community

Bulgaria Team Selection Test 2004

www.artofproblemsolving.com/community/c3522
by Mladenov

Day 1

1 Let n be a positive integer. Find all positive integers m for which there exists a polynomial $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}[X]\left(a_{n} \neq 0\right)$ such that $\operatorname{gcd}\left(a_{0}, a_{1}, \cdots, a_{n}, m\right)=1$ and $m \mid f(k)$ for each $k \in \mathbb{Z}$.

2 Find all primes $p \geq 3$ such that $p-\lfloor p / q\rfloor q$ is a square-free integer for any prime $q<p$.
3 Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.

Day 2

1 Find the maximum possible value of the product of distinct positive integers whose sum is 2004.

2 Let H be the orthocenter of $\triangle A B C$. The points $A_{1} \neq A, B_{1} \neq B$ and $C_{1} \neq C$ lie, respectively, on the circumcircles of $\triangle B C H, \triangle C A H$ and $\triangle A B H$ and satisfy $A_{1} H=B_{1} H=C_{1} H$. Denote by H_{1}, H_{2} and H_{3} the orthocenters of $\triangle A_{1} B C, \triangle B_{1} C A$ and $\triangle C_{1} A B$, respectively. Prove that $\triangle A_{1} B_{1} C_{1}$ and $\triangle H_{1} H_{2} H_{3}$ have the same orthocenter.

3 In any cell of an $n \times n$ table a number is written such that all the rows are distinct. Prove that we can remove a column such that the rows in the new table are still distinct.

Day 3

1 The points P and Q lie on the diagonals $A C$ and $B D$, respectively, of a quadrilateral $A B C D$ such that $\frac{A P}{A C}+\frac{B Q}{B D}=1$. The line $P Q$ meets the sides $A D$ and $B C$ at points M and N. Prove that the circumcircles of the triangles $A M P, B N Q, D M Q$, and $C N P$ are concurrent.

2 The edges of a graph with $2 n$ vertices ($n \geq 4$) are colored in blue and red such that there is no blue triangle and there is no red complete subgraph with n vertices. Find the least possible number of blue edges.

3 Prove that among any $2 n+1$ irrational numbers there are $n+1$ numbers such that the sum of any k of them is irrational, for all $k \in\{1,2,3, \ldots, n+1\}$.

Day 4

1 Find all $k>0$ such that there exists a function $f:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following conditions: $f(f(x, y), z)=f(x, f(y, z)) ; f(x, y)=f(y, x) ; f(x, 1)=x ; f(z x, z y)=z^{k} f(x, y)$, for any $x, y, z \in[0,1]$

2 Prove that if $a, b, c \geq 1$ and $a+b+c=9$, then $\sqrt{a b+b c+c a} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}$
3 A table with m rows and n columns is given. At any move one chooses some empty cells such that any two of them lie in different rows and columns, puts a white piece in any of those cells and then puts a black piece in the cells whose rows and columns contain white pieces. The game is over if it is not possible to make a move. Find the maximum possible number of white pieces that can be put on the table.

