AoPS Community

Bulgaria Team Selection Test 2005

www.artofproblemsolving.com/community/c3523
by Mladenov

Day 1

1 Let $A B C$ be an acute triangle. Find the locus of the points M, in the interior of $\triangle A B C$, such that $A B-F G=\frac{M F . A G+M G . B F}{C M}$, where F and G are the feet of the perpendiculars from M to the lines $B C$ and $A C$, respectively.

2 Find the number of the subsets B of the set $\{1,2, \cdots, 2005\}$ such that the sum of the elements of B is congruent to 2006 modulo 2048
$3 \quad$ Let \mathbb{R}^{*} be the set of non-zero real numbers. Find all functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ such that $f\left(x^{2}+y\right)=$ $(f(x))^{2}+\frac{f(x y)}{f(x)}$, for all $x, y \in \mathbb{R}^{*}$ and $-x^{2} \neq y$.

Day 2

$4 \quad$ Let a_{i} and b_{i}, where $i \in\{1,2, \ldots, 2005\}$, be real numbers such that the inequality $\left(a_{i} x-b_{i}\right)^{2} \geq$ $\sum_{j=1, j \neq i}^{2005}\left(a_{j} x-b_{j}\right)$ holds for all $x \in \mathbb{R}$ and all $i \in\{1,2, \ldots, 2005\}$. Find the maximum possible number of positive numbers amongst a_{i} and $b_{i}, i \in\{1,2, \ldots, 2005\}$.

5 Let $A B C, A C \neq B C$, be an acute triangle with orthocenter H and incenter I. The lines $C H$ and $C I$ meet the circumcircle of $\triangle A B C$ at points D and L, respectively. Prove that $\angle C I H=90^{\circ}$ if and only if $\angle I D L=90^{\circ}$

6 In a group of nine persons it is not possible to choose four persons such that every one knows the three others. Prove that this group of nine persons can be partitioned into four groups such that nobody knows anyone from his or her group.

