AoPS Community

2007 Bulgaria Team Selection Test

Bulgaria Team Selection Test 2007

www.artofproblemsolving.com/community/c3525 by bilarev

Day 1

1 Let $A B C$ is a triangle with $\angle B A C=\frac{\pi}{6}$ and the circumradius equal to 1 . If X is a point inside or in its boundary let $m(X)=\min (A X, B X, C X)$. Find all the angles of this triangle if $\max (m(X))=\frac{\sqrt{3}}{3}$.

2 Find all $a \in \mathbb{R}$ for which there exists a non-constant function $f:(0,1] \rightarrow \mathbb{R}$ such that

$$
a+f(x+y-x y)+f(x) f(y) \leq f(x)+f(y)
$$

for all $x, y \in(0,1]$.
3 Let I be the center of the incircle of non-isosceles triangle $A B C, A_{1}=A I \cap B C$ and $B_{1}=$ $B I \cap A C$. Let l_{a} be the line through A_{1} which is parallel to $A C$ and l_{b} be the line through B_{1} parallel to $B C$. Let $l_{a} \cap C I=A_{2}$ and $l_{b} \cap C I=B_{2}$. Also $N=A A_{2} \cap B B_{2}$ and M is the midpoint of $A B$. If $C N \| I M$ find $\frac{C N}{I M}$.
$4 \quad$ Let G is a graph and x is a vertex of G. Define the transformation φ_{x} over G as deleting all incident edges with respect of x and drawing the edges $x y$ such that $y \in G$ and y is not connected with x with edge in the beginning of the transformation. A graph H is called G-attainable if there exists a sequece of such transformations which transforms G in H. Let $n \in \mathbb{N}$ and $4 \mid n$. Prove that for each graph G with $4 n$ vertices and n edges there exists G-attainable graph with at least $9 n^{2} / 4$ triangles.

Day 2

1 In isosceles triangle $A B C(A C=B C)$ the point M is in the segment $A B$ such that $A M=$ $2 M B, F$ is the midpoint of $B C$ and H is the orthogonal projection of M in $A F$. Prove that $\angle B H F=\angle A B C$.

2 Let n, k be positive integers such that $n \geq 2 k>3$ and $A=\{1,2, \ldots, n\}$. Find all n and k such that the number of k-element subsets of A is $2 n-k$ times bigger than the number of 2 -element subsets of A.

3 Let $n \geq 2$ is positive integer. Find the best constant $C(n)$ such that

$$
\sum_{i=1}^{n} x_{i} \geq C(n) \sum_{1 \leq j<i \leq n}\left(2 x_{i} x_{j}+\sqrt{x_{i} x_{j}}\right)
$$

is true for all real numbers $x_{i} \in(0,1), i=1, \ldots, n$ for which $\left(1-x_{i}\right)\left(1-x_{j}\right) \geq \frac{1}{4}, 1 \leq j<i \leq n$.
4 Let $p=4 k+3$ be a prime number. Find the number of different residues mod p of $\left(x^{2}+y^{2}\right)^{2}$ where $(x, p)=(y, p)=1$.

