

AoPS Community

Bulgaria Team Selection Test 2007

www.artofproblemsolving.com/community/c3525 by bilarev

Day 1

,	
1	Let <i>ABC</i> is a triangle with $\angle BAC = \frac{\pi}{6}$ and the circumradius equal to 1. If <i>X</i> is a point inside or in its boundary let $m(X) = \min(AX, BX, CX)$. Find all the angles of this triangle if $\max(m(X)) = \frac{\sqrt{3}}{3}$.
2	Find all $a \in \mathbb{R}$ for which there exists a non-constant function $f : (0,1] \rightarrow \mathbb{R}$ such that
	$a + f(x + y - xy) + f(x)f(y) \le f(x) + f(y)$
	for all $x, y \in (0, 1]$.
3	Let <i>I</i> be the center of the incircle of non-isosceles triangle ABC , $A_1 = AI \cap BC$ and $B_1 = BI \cap AC$. Let l_a be the line through A_1 which is parallel to AC and l_b be the line through B_1 parallel to BC . Let $l_a \cap CI = A_2$ and $l_b \cap CI = B_2$. Also $N = AA_2 \cap BB_2$ and M is the midpoint of AB . If $CN \parallel IM$ find $\frac{CN}{IM}$.
4	Let <i>G</i> is a graph and <i>x</i> is a vertex of <i>G</i> . Define the transformation φ_x over <i>G</i> as deleting all incident edges with respect of <i>x</i> and drawing the edges xy such that $y \in G$ and <i>y</i> is not connected with <i>x</i> with edge in the beginning of the transformation. A graph <i>H</i> is called <i>G</i> -attainable if there exists a sequece of such transformations which transforms <i>G</i> in <i>H</i> . Let $n \in \mathbb{N}$ and $4 n$. Prove that for each graph <i>G</i> with $4n$ vertices and <i>n</i> edges there exists G -attainable graph with at least $9n^2/4$ triangles.
Day 2	2
1	In isosceles triangle $ABC(AC = BC)$ the point M is in the segment AB such that $AM = 2MB$, F is the midpoint of BC and H is the orthogonal projection of M in AF . Prove that $\angle BHF = \angle ABC$.
2	Let n, k be positive integers such that $n \ge 2k > 3$ and $A = \{1, 2,, n\}$. Find all n and k such that the number of k -element subsets of A is $2n - k$ times bigger than the number of 2-element subsets of A .
3	Let $n \ge 2$ is positive integer. Find the best constant $C(n)$ such that
	$\sum_{i=1}^{n} x_i \ge C(n) \sum_{1 \le j < i \le n} (2x_i x_j + \sqrt{x_i x_j})$

AoPS Community

2007 Bulgaria Team Selection Test

is true for all real numbers $x_i \in (0, 1), i = 1, ..., n$ for which $(1 - x_i)(1 - x_j) \ge \frac{1}{4}, 1 \le j < i \le n$.

4 Let p = 4k + 3 be a prime number. Find the number of different residues mod p of $(x^2 + y^2)^2$ where (x, p) = (y, p) = 1.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.