Art of Problem Solving

AoPS Community

2008 Bulgaria Team Selection Test

Bulgaria Team Selection Test 2008

www.artofproblemsolving.com/community/c3526
by Mladenov

Day 1

1 Let n be a positive integer. There is a pawn in one of the cells of an $n \times n$ table. The pawn moves from an arbitrary cell of the k th column, $k \in\{1,2, \cdots, n\}$, to an arbitrary cell in the k th row. Prove that there exists a sequence of n^{2} moves such that the pawn goes through every cell of the table and finishes in the starting cell.

2 The point P lies inside, or on the boundary of, the triangle $A B C$. Denote by d_{a}, d_{b} and d_{c} the distances between P and $B C, C A$, and $A B$, respectively. Prove that $\max \{A P, B P, C P\} \geq$ $\sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?
$3 \quad$ Let \mathbb{R}^{+}be the set of positive real numbers. Find all real numbers a for which there exists a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $3(f(x))^{2}=2 f(f(x))+a x^{4}$, for all $x \in \mathbb{R}^{+}$.

Day 2

1 For each positive integer n, denote by a_{n} the first digit of 2^{n} (base ten). Is the number 0. $a_{1} a_{2} a_{3} \ldots$ rational?

2 In the triangle $A B C, A M$ is median, $M \in B C, B B_{1}$ and $C C_{1}$ are altitudes, $C_{1} \in A B, B_{1} \in A C$. The line through A which is perpendicular to $A M$ cuts the lines $B B_{1}$ and $C C_{1}$ at points E and F, respectively. Let k be the circumcircle of $\triangle E F M$. Suppose also that k_{1} and k_{2} are circles touching both $E F$ and the arc $E F$ of k which does not contain M. If P and Q are the points at which k_{1} intersects k_{2}, prove that P, Q, and M are collinear.

3 Let G be a directed graph with infinitely many vertices. It is known that for each vertex the outdegree is greater than the indegree. Let O be a fixed vertex of G. For an arbitrary positive number n, let V_{n} be the number of vertices which can be reached from O passing through at most n edges (O counts). Find the smallest possible value of V_{n}.

