Art of Problem Solving

AoPS Community

Final Round - Costa Rica 2003

www.artofproblemsolving.com/community/c3527
by Jutaro

Day 1 August 26th

1 Two players A and B participate in the following game. Initially we have a pile of 2003 stones. A plays first, and he picks a divisor of 2003 and removes that number of stones from the pile. Then B picks a divisor of the number of remaining stones, and removes that number of stones from the pile, and so forth. The players who removes the last stone loses. Prove that one of the players has a winning strategy and describe it.

2 Let $A B$ be a diameter of circle ω. ℓ is the tangent line to ω at B. Take two points C, D on ℓ such that B is between C and $D . E, F$ are the intersections of ω and $A C, A D$, respectively, and G, H are the intersections of ω and $C F, D E$, respectively. Prove that $A H=A G$.

3 If $a>1$ and $b>2$ are positive integers, show that $a^{b}+1 \geq b(a+1)$, and determine when equality holds.

Day 2 August 27th
$4 \quad S_{1}$ and S_{2} are two circles that intersect at distinct points P and $Q . \ell_{1}$ and ℓ_{2} are two parallel lines through P and $Q . \ell_{1}$ intersects S_{1} and S_{2} at points A_{1} and A_{2}, different from P, respectively. ℓ_{2} intersects S_{1} and S_{2} at points B_{1} and B_{2}, different from Q, respectively. Show that the perimeters of the triangles $A_{1} Q A_{2}$ and $B_{1} P B_{2}$ are equal.

5 Each of the squares of an 8×8 board can be colored white or black. Find the number of colorings of the board such that every 2×2 square contains exactly 2 black squares and 2 white squares.

6 Say a number is tico if the sum of it's digits is a multiple of 2003.
(i) Show that there exists a positive integer N such that the first 2003 multiples, $N, 2 N, 3 N, \ldots 2003 N$ are all tico.
(ii) Does there exist a positive integer N such that all it's multiples are tico?

