Art of Problem Solving

AoPS Community

Final Round - Costa Rica 2006

www.artofproblemsolving.com/community/c3528
by campos, manlio, mathmanman, Megus, Michal Marcinkowski

Day 1

1 Consider the set $S=\{1,2, \ldots, n\}$. For every $k \in S$, define $S_{k}=\{X \subseteq S, k \notin X, X \neq \emptyset\}$. Determine the value of the sum

$$
S_{k}^{*}=\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in S_{k}} \frac{1}{i_{1} \cdot i_{2} \cdot \ldots \cdot i_{r}}
$$

in fact, this problem was taken from an austrian-polish
2 If a, b, c are the sidelengths of a triangle, then prove that $\frac{3\left(a^{4}+b^{4}+c^{4}\right)}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}+\frac{b c+c a+a b}{a^{2}+b^{2}+c^{2}} \geq 2$.
3 Let $A B C$ be a triangle. Let P, Q, R be the midpoints of $B C, C A, A B$ respectively. Let U, V, W be the midpoints of $Q R, R P, P Q$ respectively. Let $x=A U, y=B V, z=C W$.
Prove that there exist a triangle with sides x, y, z.

Day 2

1 Let f be a function that satisfies :

$$
f(x)+2 f\left(\frac{x+\frac{2001}{2}}{x-1}\right)=4014-x .
$$

Find $f(2004)$.
2 Let n be a positive integer, and let p be a prime, such that $n>p$.
Prove that :

$$
\binom{n}{p} \equiv\left\lfloor\frac{n}{p}\right\rfloor \quad(\bmod p) .
$$

3 Given a triangle $A B C$ satisfying $A C+B C=3 \cdot A B$. The incircle of triangle $A B C$ has center I and touches the sides $B C$ and $C A$ at the points D and E, respectively. Let K and L be the reflections of the points D and E with respect to I. Prove that the points A, B, K, L lie on one circle.

Proposed by Dimitris Kontogiannis, Greece

