## AoPS Community

## Final Round - Costa Rica 2008

www.artofproblemsolving.com/community/c3529 by trejos

1 We want to colour all the squares of an $n x n$ board of red or black. The colorations should be such that any subsquare of $2 x 2$ of the board have exactly two squares of each color. If $n \geq 2$ how many such colorations are possible?

2 Let $A B C$ be a triangle and let $P$ be a point on the angle bisector $A D$, with $D$ on $B C$. Let $E, F$ and $G$ be the intersections of $A P, B P$ and $C P$ with the circumcircle of the triangle, respectively. Let $H$ be the intersection of $E F$ and $A C$, and let $I$ be the intersection of $E G$ and $A B$. Determine the geometric place of the intersection of $B H$ and $C I$ when $P$ varies.

3 Find all polinomials $P(x)$ with real coefficients, such that
$P(\sqrt{3}(a-b))+P(\sqrt{3}(b-c))+P(\sqrt{3}(c-a))=P(2 a-b-c)+P(-a+2 b-c)+P(-a-b+2 c)$ for any $a, b$ and $c$ real numbers

4 Let $x, y$ and $z$ be non negative reals, such that there are not two simultaneously equal to 0 . Show that
$\frac{x+y}{y+z}+\frac{y+z}{x+y}+\frac{y+z}{z+x}+\frac{z+x}{y+z}+\frac{z+x}{x+y}+\frac{x+y}{z+x} \geq 5+\frac{x^{2}+y^{2}+z^{2}}{x y+y z+z x}$ and determine the equality cases.
$5 \quad$ Let $p$ be a prime number such that $p-1$ is a perfect square. Prove that the equation $a^{2}+(p-$ 1) $b^{2}=p c^{2}$
has infinite many integer solutions $a, b$ and $c$ with $(a, b, c)=1$
6 Let $O$ be the circumcircle of a $\triangle A B C$ and let $I$ be its incenter, for a point $P$ of the plane let $f(P)$ be the point obtained by reflecting $P^{\prime}$ by the midpoint of $O I$, with $P^{\prime}$ the homothety of $P$ with center $O$ and ratio $\frac{R}{r}$ with $r$ the inradii and $R$ the circumradii, (understand it by $\frac{O P}{O P^{\prime}}=\frac{R}{r}$ ). Let $A_{1}, B_{1}$ and $C_{1}$ the midpoints of $B C, A C$ and $A B$, respectively. Show that the rays $A_{1} f(A)$, $B_{1} f(B)$ and $C_{1} f(C)$ concur on the incircle.

