AoPS Community

Final Round - Costa Rica 2009

www.artofproblemsolving.com/community/c3530
by trejos
$1 \quad$ Let x and y positive real numbers such that $(1+x)(1+y)=2$. Show that $x y+\frac{1}{x y} \geq 6$
2 Prove that for that for every positive integer n, the smallest integer that is greater than $(\sqrt{3}+$ $1)^{2 n}$ is divisible by 2^{n+1}.

3 Let triangle $A B C$ acutangle, with $m \angle A C B \leq m \angle A B C . M$ the midpoint of side $B C$ and P a point over the side MC. Let C_{1} the circunference with center C. Let C_{2} the circunference with center B. P is a point of C_{1} and C_{2}. Let X a point on the opposite semiplane than B respecting with the straight line $A P$; Let Y the intersection of side $X B$ with C_{2} and Z the intersection of side $X C$ with C_{1}. Let $m \angle P A X=\alpha$ and $m \angle A B C=\beta$. Find the geometric place of X if it satisfies the following conditions: $(a) \frac{X Y}{X Z}=\frac{X C+C P}{X B+B P}(b) \cos (\alpha)=A B \cdot \frac{\sin (\beta)}{A P}$

4 Show that the number $3^{4^{5}}+4^{5^{6}}$ can be expresed as the product of two integers greater than 10^{2009}

5 Suppose the polynomial $x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1}+a_{0}$ can be factorized as $\left(x+r_{1}\right)\left(x+r_{2}\right) \ldots\left(x+r_{n}\right)$, with $r_{1}, r_{2}, \ldots, r_{n}$ real numbers.
Show that $(n-1) a_{n-1}^{2} \geq 2 n a_{n-2}$
6 Let $\triangle A B C$ with incircle Γ, let D, E and F the tangency points of Γ with sides $B C, A C$ and $A B$, respectively and let P the intersection point of $A D$ with Γ. a) Prove that $B C, E F$ and the straight line tangent to Γ for P concur at a point A^{\prime}.b) Define B^{\prime} and C^{\prime} in an anologous way than A^{\prime}. Prove that $A^{\prime}-B^{\prime}-C^{\prime}$

