

AoPS Community

Final Round - Costa Rica 2009

www.artofproblemsolving.com/community/c3530 by trejos

- **1** Let x and y positive real numbers such that (1 + x)(1 + y) = 2. Show that $xy + \frac{1}{xy} \ge 6$
- **2** Prove that for that for every positive integer *n*, the smallest integer that is greater than $(\sqrt{3} + 1)^{2n}$ is divisible by 2^{n+1} .
- **3** Let triangle *ABC* acutangle, with $m \angle ACB \le m \angle ABC$. *M* the midpoint of side *BC* and *P* a point over the side *MC*. Let C_1 the circunference with center *C*. Let C_2 the circunference with center *B*. *P* is a point of C_1 and C_2 . Let *X* a point on the opposite semiplane than *B* respecting with the straight line *AP*; Let *Y* the intersection of side *XB* with C_2 and *Z* the intersection of side *XC* with C_1 . Let $m \angle PAX = \alpha$ and $m \angle ABC = \beta$. Find the geometric place of *X* if it satisfies the following conditions: $(a)\frac{XY}{XZ} = \frac{XC+CP}{XB+BP}$ $(b)\cos(\alpha) = AB \cdot \frac{\sin(\beta)}{AP}$
- 4 Show that the number $3^{4^5} + 4^{5^6}$ can be expresed as the product of two integers greater than 10^{2009}
- 5 Suppose the polynomial $x^n + a_{n-1}x^{n-1} + \ldots + a_1 + a_0$ can be factorized as $(x+r_1)(x+r_2)\dots(x+r_n)$, with r_1, r_2, \dots, r_n real numbers. Show that $(n-1)a_{n-1}^2 \ge 2na_{n-2}$
- **6** Let ΔABC with incircle Γ , let D, E and F the tangency points of Γ with sides BC, AC and AB, respectively and let P the intersection point of AD with Γ . a) Prove that BC, EF and the straight line tangent to Γ for P concur at a point A'. b) Define B' and C' in an anologous way than A'. Prove that A' B' C'

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱