AoPS Community

Final Round - Costa Rica 2010

www.artofproblemsolving.com/community/c3531
by hatchguy

1 Consider points D, E and F on sides $B C, A C$ and $A B$, respectively, of a triangle $A B C$, such that $A D, B E$ and $C F$ concurr at a point G. The parallel through G to $B C$ cuts $D F$ and $D E$ at H and I, respectively. Show that triangles $A H G$ and $A I G$ have the same areas.

2 Consider the sequence $x_{n}>0$ defined with the following recurrence relation:

$$
x_{1}=0
$$

and for $n>1$

$$
(n+1)^{2} x_{n+1}^{2}+\left(2^{n}+4\right)(n+1) x_{n+1}+2^{n+1}+2^{2 n-2}=9 n^{2} x_{n}^{2}+36 n x_{n}+32 .
$$

Show that if n is a prime number larger or equal to 5 , then x_{n} is an integer.
3 Christian Reiher and Reid Barton want to open a security box, they already managed to discover the algorithm to generate the key codes and they obtained the following information:
$i)$ In the screen of the box will appear a sequence of $n+1$ numbers, $C_{0}=\left(a_{0,1}, a_{0,2}, \ldots, a_{0, n+1}\right)$
ii) If the code $K=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ opens the security box then the following must happen:
a) A sequence $C_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, n+1}\right)$ will be asigned to each k_{i} defined as follows:
$a_{i, 1}=1$ and $a_{i, j}=a_{i-1, j}-k_{i} a_{i, j-1}$, for $i, j \geq 1$
b) The sequence $\left(C_{n}\right)$ asigned to k_{n} satisfies that $S_{n}=\sum_{i=1}^{n+1}\left|a_{i}\right|$ has its least possible value, considering all possible sequences K.

The sequence C_{0} that appears in the screen is the following:
$a_{0,1}=1$ and a_{0}, i is the sum of the products of the elements of each of the subsets with $i-1$ elements of the set $A=1,2,3, \ldots, n, i \geq 2$, such that $a_{0, n+1}=n$!

Find a sequence $K=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ that satisfies the conditions of the problem and show that there exists at least n ! of them.

4 Find all integer solutions (a, b) of the equation

$$
(a+b+3)^{2}+2 a b=3 a b(a+2)(b+2)
$$

$5 \quad$ Let C_{1} be a circle with center O and let B and C be points in C_{1} such that $B O C$ is an equilateral triangle. Let D be the midpoint of the minor arc $B C$ of C_{1}. Let C_{2} be the circle with center C that passes through B and O. Let E be the second intersection of C_{1} and C_{2}. The parallel to $D E$ through B intersects C_{1} for second time in A. Let C_{3} be the circumcircle of triangle $A O C$. The second intersection of C_{2} and C_{3} is F. Show that $B E$ and $B F$ trisect the angle $\angle A B C$.

6 Let F be the family of all sets of positive integers with 2010 elements that satisfy the following condition:
The difference between any two of its elements is never the same as the difference of any other two of its elements. Let f be a function defined from F to the positive integers such that $f(K)$ is the biggest element of $K \in F$. Determine the least value of $f(K)$.

