

AoPS Community

Final Round - Korea 1993

www.artofproblemsolving.com/community/c3532 by N.T.TUAN

Day	1
-----	---

1	Consider a 9×9 array of white squares. Find the largest $n \in \mathbb{N}$ with the property. No matter how one chooses n out of 81 white squares and color in black, there always remains a 1×4 array of white squares (either vertical or horizontal).
2	Let be given a triangle ABC with $BC = a$, $CA = b$, $AB = c$. Find point P in the plane for which $aAP^2 + bBP^2 + cCP^2$ is minimum, and compute this minimum.
3	Find the smallest $x \in \mathbb{N}$ for which $rac{7x^{25}-10}{83}$ is an integer.
Day	2
4	An integer which is the area of a right-angled triangle with integer sides is called <i>Pythagorean</i> . Prove that for every positive integer $n > 12$ there exists a Pythagorean number between n and $2n$.
5	Given $n \in \mathbb{N}$, nd all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$,
	$\sum_{k=0}^n \binom{n}{k} f(x^{2^k}) = 0.$
6	Consider a triangle ABC with $BC = a, CA = b, AB = c$. Let D be the midpoint of BC and E be

6 Consider a triangle ABC with BC = a, CA = b, AB = c. Let D be the midpoint of BC and E be the intersection of the bisector of A with BC. The circle through A, D, E meets AC, AB again at F, G respectively. Let $H \neq B$ be a point on AB with BG = GH. Prove that triangles EBH and ABC are similar and nd the ratio of their areas.

Act of Problem Solving is an ACS WASC Accredited School.