Art of Problem Solving

AoPS Community

Final Round - Korea 1993

www.artofproblemsolving.com/community/c3532
by N.T.TUAN

Day 1

1 Consider a 9×9 array of white squares. Find the largest $n \in \mathbb{N}$ with the property: No matter how one chooses n out of 81 white squares and color in black, there always remains a 1×4 array of white squares (either vertical or horizontal).

2 Let be given a triangle $A B C$ with $B C=a, C A=b, A B=c$. Find point P in the plane for which $a A P^{2}+b B P^{2}+c C P^{2}$ is minimum, and compute this minimum.

3 Find the smallest $x \in \mathbb{N}$ for which $\frac{7 x^{25}-10}{83}$ is an integer.

Day 2

4 An integer which is the area of a right-angled triangle with integer sides is called Pythagorean. Prove that for every positive integer $n>12$ there exists a Pythagorean number between n and $2 n$.
$5 \quad$ Given $n \in \mathbb{N}$, nd all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$
\sum_{k=0}^{n}\binom{n}{k} f\left(x^{2^{k}}\right)=0
$$

6 Consider a triangle $A B C$ with $B C=a, C A=b, A B=c$. Let D be the midpoint of $B C$ and E be the intersection of the bisector of A with $B C$. The circle through A, D, E meets $A C, A B$ again at F, G respectively. Let $H \neq B$ be a point on $A B$ with $B G=G H$. Prove that triangles $E B H$ and $A B C$ are similar and nd the ratio of their areas.

