Art of Problem Solving

AoPS Community

Final Round - Korea 1997

www.artofproblemsolving.com/community/c3533
by Leon

Day 1

1 A word is a sequence of 0 and 1 of length 8 . Let x and y be two words differing in exactly three places.
Prove that the number of words differing from each of x and y in at least five places is 188.
2 The incircle of a triangle $A_{1} A_{2} A_{3}$ is centered at O and meets the segment $O A_{j}$ at $B_{j}, j=1,2,3$. A circle with center B_{j} is tangent to the two sides of the triangle having A_{j} as an endpoint and intersects the segment $O B_{j}$ at C_{j}. Prove that

$$
\frac{O C_{1}+O C_{2}+O C_{3}}{A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}} \leq \frac{1}{4 \sqrt{3}}
$$

and find the conditions for equality.
3 Find all pairs of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) if $x<y$, then $f(x)<f(y)$;
(ii) $f(x y)=g(y) f(x)+f(y)$ for all $x, y \in \mathbb{R}$.

Day 2

4 Given a positive integer n, find the number of n-digit natural numbers consisting of digits 1,2 , 3 in which any two adjacent digits are either distinct or both equal to 3 .

5 For positive numbers $a_{1}, a_{2}, \ldots, a_{n}$, we define

$$
A=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}, \quad G=\sqrt[n]{a_{1} \cdots a_{n}}, \quad H=\frac{n}{a_{1}^{-1}+\cdots+a_{n}^{-1}}
$$

Prove that
(i) $\frac{A}{H} \leq-1+2\left(\frac{A}{G}\right)^{n}$, for n even
(ii) $\frac{A}{H} \leq-\frac{n-2}{n}+\frac{2(n-1)}{n}\left(\frac{A}{G}\right)^{n}$, for n odd

6 Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes, and let $n_{1}, n_{2}, \ldots, n_{r}$ be arbitrary natural numbers. Prove that the number of pairs of integers (x, y) such that

$$
x^{3}+y^{3}=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}
$$

