Art of Problem Solving

AoPS Community

Final Round - Korea 1998

www.artofproblemsolving.com/community/c3534
by Peter, ComplexPhi, bah_luckyboy, chien than

Day 1

1 Find all pairwise relatively prime positive integers l, m, n such that

$$
(l+m+n)\left(\frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)
$$

is an integer.
2 Let D, E, F be points on the sides $B C, C A, A B$ respectively of a triangle $A B C$. Lines $A D, B E, C F$ intersect the circumcircle of $A B C$ again at P, Q, R, respectively. Show that:

$$
\frac{A D}{P D}+\frac{B E}{Q E}+\frac{C F}{R F} \geq 9
$$

and find the cases of equality.
3 Denote by $\phi(n)$ for all $n \in \mathbb{N}$ the number of positive integer smaller than n and relatively prime to n. Also, denote by $\omega(n)$ for all $n \in \mathbb{N}$ the number of prime divisors of n. Given that $\phi(n) \mid n-1$ and $\omega(n) \leq 3$. Prove that n is a prime number.

Day 2

1 Let x, y, z be positive real numbers satisfying $x+y+z=x y z$. Prove that:

$$
\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+y^{2}}}+\frac{1}{\sqrt{1+z^{2}}} \leq \frac{3}{2}
$$

2 Let I be the incenter of triangle $A B C, O_{1}$ a circle through B tangent to $C I$, and O_{2} a circle through C tangent to $B I$. Prove that O_{1}, O_{2} and the circumcircle of $A B C$ have a common point.

3 Let F_{n} be the set of all bijective functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ that satisfy the conditions:

1. $f(k) \leq k+1$ for all $k \in\{1,2, \ldots, n\}$
2. $f(k) \neq k$ for all $k \in\{2,3, \ldots, n\}$

Find the probability that $f(1) \neq 1$ for f randomly chosen from F_{n}.

