AoPS Community

Final Round - Korea 1999

www.artofproblemsolving.com/community/c3535
by dondigo, ComplexPhi, gabriel ponce, xxreddevilzxx, stephen38

Day 1

1 We are given two triangles. Prove, that if $\angle C=\angle C^{\prime}$ and $\frac{R}{r}=\frac{R^{\prime}}{r^{\prime}}$, then they are similar.
2 Suppose $f(x)$ is a function satisfying $|f(m+n)-f(m)| \leq \frac{n}{m}$ for all positive integers m, n. Show that for all positive integers k :

$$
\sum_{i=1}^{k}\left|f\left(2^{k}\right)-f\left(2^{i}\right)\right| \leq \frac{k(k-1)}{2}
$$

3 Find all intengers n such that $2^{n}-1$ is a multiple of 3 and $\left(2^{n}-1\right) / 3$ is a divisor of $4 m^{2}+1$ for some intenger m .

Day 2

1 If the equation:
$f\left(\frac{x-3}{x+1}\right)+f\left(\frac{3+x}{1-x}\right)=x$
holds true for all real \mathbf{x} but ± 1, find $f(x)$.
2 A permutation $a_{1}, a_{2}, \cdots, a_{6}$ of numbers $1,2, \cdots, 6$ can be transformed to $1,2, \cdots, 6$ by transposing two numbers exactly four times. Find the number of such permutations.

3 Let $a_{1}, a_{2}, \ldots, a_{1999}$ be nonnegative real numbers satisfying the following conditions:
a. $a_{1}+a_{2}+\ldots+a_{1999}=2$
b. $a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{1999} a_{1}=1$.

Let $S=a_{1}^{2}+a_{2}^{2}+\ldots+a_{1999}^{2}$. Find the maximum and minimum values of S.

