

AoPS Community

Final Round - Korea 1999

www.artofproblemsolving.com/community/c3535

by dondigo, ComplexPhi, gabriel ponce, xxreddevilzxx, stephen38

Dav [†]	1
------------------	---

1	We are given two triangles. Prove, that if $\angle C = \angle C'$ and $\frac{R}{r} = \frac{R'}{r'}$, then they are similar.
2	Suppose $f(x)$ is a function satisfying $ f(m+n) - f(m) \le \frac{n}{m}$ for all positive integers m,n . Show that for all positive integers k :
	$\sum_{i=1}^{k} \left f(2^k) - f(2^i) \right \le \frac{k(k-1)}{2}$
3	Find all intengers n such that $2^n - 1$ is a multiple of 3 and $(2^n - 1)/3$ is a divisor of $4m^2 + 1$ for some intenger m.
Day 2	2
1	If the equation: $f(\frac{x-3}{x+1}) + f(\frac{3+x}{1-x}) = x$
	holds true for all real x but ± 1 , find $f(x)$.
2	A permutation a_1, a_2, \dots, a_6 of numbers $1, 2, \dots, 6$ can be transformed to $1, 2, \dots, 6$ by transposing two numbers exactly four times. Find the number of such permutations.
3	Let $a_1, a_2,, a_{1999}$ be nonnegative real numbers satisfying the following conditions: a. $a_1 + a_2 + + a_{1999} = 2$ b. $a_1a_2 + a_2a_3 + + a_{1999}a_1 = 1$. Let $S = a_1^2 + a_2^2 + + a_{1999}^2$. Find the maximum and minimum values of S .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱