

AoPS Community

Final Round - Korea 2000

www.artofproblemsolving.com/community/c3536 by Sayan

Day 1

- 1Prove that for any prime p, there exist integers x, y, z, and w such that $x^2 + y^2 + z^2 wp = 0$
and 0 < w < p2Determine all function f from the set of real numbers to itself such that for every x and y,
 $f(x^2 y^2) = (x y)(f(x) + f(y))$ 3A rectangle ABCD is inscribed in a circle with centre O. The exterior bisectors of $\angle ABD$ and
 - $\angle ADB$ intersect at *P*; those of $\angle DAB$ and $\angle DBA$ intersect at *Q*; those of $\angle ACD$ and $\angle ADC$ intersect at *R*; and those of $\angle DAC$ and $\angle DCA$ intersect at *S*. Prove that *P*, *Q*, *R*, and *S* are concyclic.

Day 2

1 Let p be a prime such that $p \equiv 1 \pmod{4}$. Evaluate

$$\sum_{k=1}^{p-1} \left(\left\lfloor \frac{2k^2}{p} \right\rfloor - 2 \left\lfloor \frac{k^2}{p} \right\rfloor \right)$$

2 Prove that an $m \times n$ rectangle can be constructed using copies of the following shape if and only if mn is a multiple of 8 where m > 1 and n > 1

AoPS Community

2000 Korea - Final Round

3 The real numbers a, b, c, x, y, and z are such that a > b > c > 0 and x > y > z > 0. Prove that

$$\frac{a^2x^2}{(by+cz)(bz+cy)} + \frac{b^2y^2}{(cz+ax)(cx+az)} + \frac{c^2z^2}{(ax+by)(ay+bx)} \geq \frac{3}{4}$$

Act of Problem Solving is an ACS WASC Accredited School.