AoPS Community

Final Round - Korea 2000

www.artofproblemsolving.com/community/c3536
by Sayan

Day 1

1 Prove that for any prime p, there exist integers x, y, z, and w such that $x^{2}+y^{2}+z^{2}-w p=0$ and $0<w<p$

2 Determine all function f from the set of real numbers to itself such that for every x and y,

$$
f\left(x^{2}-y^{2}\right)=(x-y)(f(x)+f(y))
$$

3 A rectangle $A B C D$ is inscribed in a circle with centre O. The exterior bisectors of $\angle A B D$ and $\angle A D B$ intersect at P; those of $\angle D A B$ and $\angle D B A$ intersect at Q; those of $\angle A C D$ and $\angle A D C$ intersect at R; and those of $\angle D A C$ and $\angle D C A$ intersect at S. Prove that P, Q, R, and S are concyclic.

Day 2

1 Let p be a prime such that $p \equiv 1(\bmod 4)$. Evaluate

$$
\sum_{k=1}^{p-1}\left(\left\lfloor\frac{2 k^{2}}{p}\right\rfloor-2\left\lfloor\frac{k^{2}}{p}\right\rfloor\right)
$$

2 Prove that an $m \times n$ rectangle can be constructed using copies of the following shape if and only if $m n$ is a multiple of 8 where $m>1$ and $n>1$

3 The real numbers a, b, c, x, y, and z are such that $a>b>c>0$ and $x>y>z>0$. Prove that

$$
\frac{a^{2} x^{2}}{(b y+c z)(b z+c y)}+\frac{b^{2} y^{2}}{(c z+a x)(c x+a z)}+\frac{c^{2} z^{2}}{(a x+b y)(a y+b x)} \geq \frac{3}{4}
$$

