AoPS Community

Final Round - Korea 2001

www.artofproblemsolving.com/community/c3537
by hshiems, Sayan

Day 1

1 Given an odd prime p, find all functions $f: Z \rightarrow Z$ satisfying the following two conditions:
(i) $f(m)=f(n)$ for all $m, n \in Z$ such that $m \equiv n(\bmod p)$;
(ii) $f(m n)=f(m) f(n)$ for all $m, n \in Z$.

2 Let P be a given point inside a convex quadrilateral $O_{1} O_{2} O_{3} O_{4}$. For each $i=1,2,3,4$, consider the lines l that pass through P and meet the rays $O_{i} O_{i-1}$ and $O_{i} O_{i+1}$ (where $O_{0}=O_{4}$ and $\left.O_{5}=O_{1}\right)$ at distinct points $A_{i}(l)$ and $B_{i}(l)$, respectively. Denote $f_{i}(l)=P A_{i}(l) \cdot P B_{i}(l)$. Among all such lines l, let l_{i} be the one that minimizes f_{i}. Show that if $l_{1}=l_{3}$ and $l_{2}=l_{4}$, then the quadrilateral $O_{1} O_{2} O_{3} O_{4}$ is a parallelogram.

3 Let $x_{1}, x_{2}, \cdots, x_{n}$ and $y_{1}, y_{2}, \cdots, y_{n}$ be arbitrary real numbers satisfying $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=$ $y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}=1$. Prove that

$$
\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \leq 2\left|1-\sum_{k=1}^{n} x_{k} y_{k}\right|
$$

and find all cases of equality.

Day 2

1 For given positive integers n and N, let P_{n} be the set of all polynomials $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}$ with integer coefficients such that:
(a) $\left|a_{j}\right| \leq N$ for $j=0,1, \cdots, n$;
(b) The set $\left\{j \mid a_{j}=N\right\}$ has at most two elements.

Find the number of elements of the set $\left\{f(2 N) \mid f(x) \in P_{n}\right\}$.
2 In a triangle $A B C$ with $\angle B<45^{\circ}, D$ is a point on $B C$ such that the incenter of $\triangle A B D$ coincides with the circumcenter O of $\triangle A B C$. Let P be the intersection point of the tangent lines to the circumcircle ω of $\triangle A O C$ at points A and C. The lines $A D$ and $C O$ meet at Q. The tangent to ω at O meets $P Q$ at X. Prove that $X O=X D$.

3 For a positive integer $n \geq 5$, let $a_{i}, b_{i}(i=1,2, \cdots, n)$ be integers satisfying the following two conditions:
(a) The pairs $\left(a_{i}, b_{i}\right)$ are distinct for $i=1,2, \cdots, n$;
(b) $\left|a_{1} b_{2}-a_{2} b_{1}\right|=\left|a_{2} b_{3}-a_{3} b_{2}\right|=\cdots=\left|a_{n} b_{1}-a_{1} b_{n}\right|=1$.

Prove that there exist indices i, j such that $1<|i-j|<n-1$ and $\left|a_{i} b_{j}-a_{j} b_{i}\right|=1$.

