Art of Problem Solving

AoPS Community

Final Round - Korea 2002

www.artofproblemsolving.com/community/c3538
by Sayan

Day 1

1 For a prime p of the form $12 k+1$ and $\mathbb{Z}_{p}=\{0,1,2, \cdots, p-1\}$, let

$$
\mathbb{E}_{p}=\left\{(a, b) \mid a, b \in \mathbb{Z}_{p}, \quad p \nmid 4 a^{3}+27 b^{2}\right\}
$$

For $(a, b),\left(a^{\prime}, b^{\prime}\right) \in \mathbb{E}_{p}$ we say that (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ are equivalent if there is a non zero element $c \in \mathbb{Z}_{p}$ such that $p \mid\left(a^{\prime}-a c^{4}\right)$ and $p \mid\left(b^{\prime}-b c^{6}\right)$. Find the maximal number of inequivalent elements in \mathbb{E}_{p}.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x-y)=f(x)+x y+f(y)$ for every $x \in \mathbb{R}$ and every $y \in\{f(x) \mid x \in \mathbb{R}\}$, where \mathbb{R} is the set of real numbers.

3 The following facts are known in a mathematical contest:
(a) The number of problems tested was $n \geq 4$
(b) Each problem was solved by exactly four contestants.
(c) For each pair of problems, there is exactly one contestant who solved both problems

Assuming the number of contestants is greater than or equal to $4 n$, find the minimum value of n for which there always exists a contestant who solved all the problems.

Day 2

1 For $n \geq 3$, let $S=a_{1}+a_{2}+\cdots+a_{n}$ and $T=b_{1} b_{2} \cdots b_{n}$ for positive real numbers $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$, where the numbers b_{i} are pairwise distinct.
(a) Find the number of distinct real zeroes of the polynomial

$$
f(x)=\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{n}\right) \sum_{j=1}^{n} \frac{a_{j}}{x-b_{j}}
$$

(b) Prove the inequality

$$
\frac{1}{n-1} \sum_{j=1}^{n}\left(1-\frac{a_{j}}{S}\right) b_{j}>\left(\frac{T}{S} \sum_{j=1}^{n} \frac{a_{j}}{b_{j}}\right)^{\frac{1}{n-1}}
$$

2 Let $A B C$ be an acute triangle and let ω be its circumcircle. Let the perpendicular line from A to $B C$ meet ω at D. Let P be a point on ω, and let Q be the foot of the perpendicular line from P to the line $A B$. Prove that if Q is on the outside of ω and $2 \angle Q P B=\angle P B C$, then D, P, Q are collinear.

3 Let p_{n} be the $n^{\text {th }}$ prime counting from the smallest prime 2 in increasing order. For example, $p_{1}=2, p_{2}=3, p_{3}=5, \cdots$
(a) For a given $n \geq 10$, let r be the smallest integer satisfying

$$
2 \leq r \leq n-2, \quad n-r+1<p_{r}
$$

and define $N_{s}=\left(s p_{1} p_{2} \cdots p_{r-1}\right)-1$ for $s=1,2, \ldots, p_{r}$. Prove that there exists $j, 1 \leq j \leq p_{r}$, such that none of $p_{1}, p_{2}, \cdots, p_{n}$ divides N_{j}.
(b) Using the result of (a), find all positive integers m for which

$$
p_{m+1}^{2}<p_{1} p_{2} \cdots p_{m}
$$

