Art of Problem Solving

AoPS Community

Final Round - Korea 2003

www.artofproblemsolving.com/community/c3539
by lightrhee, pbornsztein

Day 1

1 Some computers of a computer room have a following network. Each computers are connected by three cable to three computers. Two arbitrary computers can exchange data directly or indirectly (through other computers). Now let's remove K computers so that there are two computers, which can not exchange data, or there is one computer left. Let k be the minimum value of K. Let's remove L cable from original network so that there are two computers, which can not exchange data. Let l be the minimum value of L. Show that $k=l$.

2 Let M be the intersection of two diagonal, $A C$ and $B D$, of a rhombus $A B C D$, where angle $A<90^{\circ}$. Construct O on segment $M C$ so that $O B<O C$ and let $t=\frac{M A}{M O}$, provided that $O \neq$ M. Construct a circle that has O as centre and goes through B and D. Let the intersections between the circle and $A B$ be B and X. Let the intersections between the circle and $B C$ be B and Y. Let the intersections of $A C$ with $D X$ and $D Y$ be P and Q, respectively. Express $\frac{O Q}{O P}$ in terms of t.

3 Show that the equation, $2 x^{4}+2 x^{2} y^{2}+y^{4}=z^{2}$, does not have integer solution when $x \neq 0$.

Day 2

1 Let P, Q, and R be the points where the incircle of a triangle $A B C$ touches the sides $A B, B C$, and $C A$, respectively.
Prove the inequality $\frac{B C}{P Q}+\frac{C A}{Q R}+\frac{A B}{R P} \geq 6$.
2 For a positive integer, m, answer the following questions.

1) Show that $2^{m+1}+1$ is a prime number, when $2^{m+1}+1$ is a factor of $3^{2^{m}}+1$.
2) Is converse of 1) true?

3 There are n distinct points on a circumference. Choose one of the points. Connect this point and the m th point from the chosen point counterclockwise with a segment. Connect this m th point and the m th point from this m th point counterclockwise with a segment. Repeat such steps until no new segment is constructed. From the intersections of the segments, let the number of the intersections - which are in the circle - be I. Answer the following questions (m and n are positive integers that are relatively prime and they satisfy $6 \leq 2 m<n$).

1) When the n points take different positions, express the maximum value of I in terms of m
and n.
2) Prove that $I \geq n$. Prove that there is a case, which is $I=n$, when $m=3$ and n is arbitrary even number that satisfies the condition.
