

AoPS Community

Final Round - Korea 2004

www.artofproblemsolving.com/community/c3540 by Sung-yoon Kim

Day 1	
1	An isosceles triangle with $AB = AC$ has an inscribed circle O , which touches its sides BC , CA , A at K, L, M respectively. The lines OL and KM intersect at N ; the lines BN and CA intersect at Q . Let P be the foot of the perpendicular from A on BQ . Suppose that $BP = AP + 2 \cdot PQ$. Then, what values can the ratio $\frac{AB}{BC}$ assume?
2	Prove that the equation $3y^2 = x^4 + x$ has no positive integer solutions.
3	2004 computers make up a network using several cables. If for a subset S in the set of all computers, there isn't a cable that connects two computers in S , S is called independant. One lets the arbitrary independant set consists at most 50 computers, and uses the least number of cables.
	(1) Let $c(L)$ be the number of cables which connects the computer <i>L</i> . Prove that for two computers <i>A</i> , <i>B</i> , $c(A) = c(B)$ if there is a cable which connects <i>A</i> and <i>B</i> , $ c(A)-c(B) \le 1$ otherwise.
	(2) Determine the number of used cables.
Day 2	
1	On a circle there are n points such that every point has a distinct number. Determine the number of ways of choosing k points such that for any point there are at least 3 points between this point and the nearest point. (clockwise) ($n, k \ge 2$)
2	An acute triangle ABC has circumradius R , inradius r . A is the biggest angle among A, B, C . Let M be the midpoint of BC , and X be the intersection of two lines that touches circumcircle of ABC and goes through B, C respectively. Prove the following inequality : $\frac{r}{R} \ge \frac{AM}{AX}$.
3	For prime number <i>p</i> , let $f_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$.
	(1) When p divides m , prove that there exists a prime number that is coprime with $m(m-1)$ and divides $f_p(m)$.
	(2) Prove that there are infinitely many positive integers n such that $pn+1$ is prime number.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱