Art of Problem Solving

AoPS Community

Final Round - Korea 2004

www.artofproblemsolving.com/community/c3540
by Sung-yoon Kim

Day 1

1 An isosceles triangle with $A B=A C$ has an inscribed circle O, which touches its sides $B C, C A, A B$ at K, L, M respectively. The lines $O L$ and $K M$ intersect at N; the lines $B N$ and $C A$ intersect at Q. Let P be the foot of the perpendicular from A on $B Q$. Suppose that $B P=A P+2 \cdot P Q$. Then, what values can the ratio $\frac{A B}{B C}$ assume?

2 Prove that the equation $3 y^{2}=x^{4}+x$ has no positive integer solutions.
32004 computers make up a network using several cables. If for a subset S in the set of all computers, there isn't a cable that connects two computers in S, S is called independant. One lets the arbitrary independant set consists at most 50 computers, and uses the least number of cables.
(1) Let $c(L)$ be the number of cables which connects the computer L. Prove that for two computers $A, B, c(A)=c(B)$ if there is a cable which connects A and $B,|c(A)-c(B)| \leq 1$ otherwise.
(2) Determine the number of used cables.

Day 2

1 On a circle there are n points such that every point has a distinct number. Determine the number of ways of choosing k points such that for any point there are at least 3 points between this point and the nearest point. (clockwise) ($n, k \geq 2$)

2 An acute triangle $A B C$ has circumradius R, inradius r. A is the biggest angle among A, B, C. Let M be the midpoint of $B C$, and X be the intersection of two lines that touches circumcircle of $A B C$ and goes through B, C respectively. Prove the following inequality: $\frac{r}{R} \geq \frac{A M}{A X}$.

3 For prime number p, let $f_{p}(x)=x^{p-1}+x^{p-2}+\cdots+x+1$.
(1) When p divides m, prove that there exists a prime number that is coprime with $m(m-1)$ and divides $f_{p}(m)$.
(2) Prove that there are infinitely many positive integers n such that $p n+1$ is prime number.

