Art of Problem Solving

AoPS Community

Final Round - Korea 2005

www.artofproblemsolving.com/community/c3541
by N.T.TUAN, Rushil

Day 1

1 Find all natural numbers that can be expressed in a unique way as a sum of ve or less perfect squares.

2 Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of positive real numbers and let α_{n} be the arithmetic mean of a_{1}, \ldots, a_{n}. Prove that for all positive integers N,

$$
\sum_{n=1}^{N} \alpha_{n}^{2} \leq 4 \sum_{n=1}^{N} a_{n}^{2}
$$

3 In a trapezoid $A B C D$ with $A D \| B C, O_{1}, O_{2}, O_{3}, O_{4}$ denote the circles with diameters $A B, B C, C D, D A$, respectively. Show that there exists a circle with center inside the trapezoid which is tangent to all the four circles O_{1}, \ldots, O_{4} if and only if $A B C D$ is a parallelogram.

Day 2

4 In the following, the point of intersection of two lines g and h will be abbreviated as $g \cap h$.
Suppose $A B C$ is a triangle in which $\angle A=90^{\circ}$ and $\angle B>\angle C$. Let O be the circumcircle of the triangle $A B C$. Let l_{A} and l_{B} be the tangents to the circle O at A and B, respectively.

Let $B C \cap l_{A}=S$ and $A C \cap l_{B}=D$. Furthermore, let $A B \cap D S=E$, and let $C E \cap l_{A}=T$. Denote by P the foot of the perpendicular from E on l_{A}. Denote by Q the point of intersection of the line $C P$ with the circle O (different from C). Denote by R be the point of intersection of the line $Q T$ with the circle O (different from Q). Finally, define $U=B R \cap l_{A}$. Prove that

$$
\frac{S U \cdot S P}{T U \cdot T P}=\frac{S A^{2}}{T A^{2}} .
$$

$5 \quad$ Find all positive integers m and n such that both $3^{m}+1$ and $3^{n}+1$ are divisible by $m n$.
$6 \quad$ A set P consists of 2005 distinct prime numbers. Let A be the set of all possible products of 1002 elements of P, and B be the set of all products of 1003 elements of P. Find a one-to-one correspondance f from A to B with the property that a divides $f(a)$ for all $a \in A$.

