AoPS Community

Final Round - Korea 2007

www.artofproblemsolving.com/community/c3543
by Stephen, Who am I, parmenides51

1 Let O be the circumcenter of an acute triangle $A B C$ and let k be the circle with center P that is tangent to O at A and tangent to side $B C$ at D. Circle k meets $A B$ and $A C$ again at E and F respectively. The lines $O P$ and $E P$ meet k again at I and G. Lines $B O$ and $I G$ intersect at H. Prove that $\frac{D F^{2}}{A F}=G H$.

2 Given a 4×4 squares table. How many ways that we can fill the table with $\{0,1\}$ such that two neighbor squares (have one common side) have product which is equal to 0 ?

3 Find all triples of (x, y, z) of positive intergers satisfying $1+4^{x}+4^{y}=z^{2}$.
4 Find all pairs (p, q) of primes such that $p^{p}+q^{q}+1$ is divisible by $p q$.
5 For the vertex A of a triangle $A B C$, let l_{a} be the distance between the projections on $A B$ and $A C$ of the intersection of the angle bisector of $\angle A$ with side $B C$. Define l_{b} and l_{c} analogously. If l is the perimeter of triangle $A B C$, prove that

$$
\frac{l_{a} l_{b} l_{c}}{l^{3}} \leq \frac{1}{64} .
$$

$6 \quad$ Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be a function satisfying $k f(n) \leq f(k n) \leq k f(n)+k-1$ for all $k, n \in N$.
(a)Prove that $f(a)+f(b) \leq f(a+b) \leq f(a)+f(b)+1$ for all $a, b \in N$.
(b)If f satisfies $f(2007 n) \leq 2007 f(n)+200$ for every $n \in N$, show that there exists $c \in N$ such that $f(2007 c)=2007 f(c)$.

