Art of Problem Solving

AoPS Community

Final Round - Korea 2009

www.artofproblemsolving.com/community/c3544
by cadiTM, 77ant

Day 1
$1 a, b, c$ are the length of three sides of a triangle. Let $A=\frac{a^{2}+b c}{b+c}+\frac{b^{2}+c a}{c+a}+\frac{c^{2}+a b}{a+b}, B=\frac{1}{\sqrt{(a+b-c)(b+c-a)}}+$ $\frac{1}{\sqrt{(b+c-a)(c+a-b)}}+\frac{1}{\sqrt{(c+a-b)(a+b-c)}}$. Prove that $A B \geq 9$.
$2 \quad A B C$ is an obtuse triangle. (angle B is obtuse) Its circumcircle is O. A tangent line for O passing C meets with $A B$ at B_{1}. Let O_{1} be a circumcenter of triangle $A B_{1} C$. B_{2} is a point on the segment $B B_{1}$. Let C_{1} be a contact point of the tangent line for O passing B_{2}, which is more closer to C. Let O_{2} be a circumcenter of triangle $A B_{2} C_{1}$. Prove that if $O O_{2}$ and $A O_{1}$ is perpendicular, then five points $O, O_{2}, O_{1}, C_{1}, C$ are concyclic.

32008 white stones and 1 black stone are in a row. An 'action' means the following: select one black stone and change the color of neighboring stone(s).
Find all possible initial position of the black stone, to make all stones black by finite actions.

Day 2

$4 \quad A B C$ is an acute triangle. (angle C is bigger than angle B) Let O be a center of the circle which passes B and tangents to $A C$ at C. O meets the segment $A B$ at D. $C O$ meets the circle (O) again at P, a line, which passes P and parallel to $A O$, meets $A C$ at E, and $E B$ meets the circle (O) again at L. A perpendicular bisector of $B D$ meets $A C$ at F and $L F$ meets $C D$ at K. Prove that two lines $E K$ and $C L$ are parallel.
$5 \quad$ There is a $m \times(m-1)$ board. (i.e. there are $m+1$ horizontal lines and m vertical lines) A stone is put on an intersection of the lowest horizontal line. Now two players move this stone with the following rules.
(i) Each players move the stone to a neighboring intersection along a segment, by turns.
(ii) A segment, which is already passed by the stone, cannot be used more.
(iii) One who cannot move the stone anymore loses.

Prove that there is a winning strategy for the former player.
$6 \quad$ Find all pairs of two positive integers (m, n) satisfying $3^{m}-7^{n}=2$.

