Art of Problem Solving

AoPS Community

Final Round - Korea 2011

www.artofproblemsolving.com/community/c3546
by cadiTM

Day 1

1 Prove that there is no positive integers x, y, z satisfying

$$
x^{2} y^{4}-x^{4} y^{2}+4 x^{2} y^{2} z^{2}+x^{2} z^{4}-y^{2} z^{4}=0
$$

$2 A B C$ is an acute triangle. P (different from B, C) is a point on side $B C . H$ is an orthocenter, and D is a foot of perpendicular from H to $A P$.
The circumcircle of the triangle $A B D$ and $A C D$ is O_{1} and O_{2}, respectively.
A line l parallel to $B C$ passes D and meet O_{1} and O_{2} again at X and Y, respectively. l meets $A B$ at E, and $A C$ at F. Two lines $X B$ and $Y C$ intersect at Z.
Prove that $Z E=Z F$ is a necessary and sufficient condition for $B P=C P$.
3 There are n boys $a_{1}, a_{2}, \ldots, a_{n}$ and n girls $b_{1}, b_{2}, \ldots, b_{n}$. Some pairs of them are connected. Any two boys or two girls are not connected, and a_{i} and b_{i} are not connected for all $i \in\{1,2, \ldots, n\}$. Now all boys and girls are divided into several groups satisfying two conditions:
(i) Every groups contains an equal number of boys and girls.
(ii) There is no connected pair in the same group.

Assume that the number of connected pairs is m. Show that we can make the number of groups not larger than $\max \left\{2, \frac{2 m}{n}+1\right\}$.

Day 2

1 Find the maximal value of the following expression, if a, b, c are nonnegative and $a+b+c=1$.

$$
\frac{1}{a^{2}-4 a+9}+\frac{1}{b^{2}-4 b+9}+\frac{1}{c^{2}-4 c+9}
$$

$2 A B C$ is a triangle such that $A C<A B<B C$ and D is a point on side $A B$ satisfying $A C=A D$. The circumcircle of $A B C$ meets with the bisector of angle A again at E and meets with $C D$ again at F. K is an intersection point of $B C$ and $D E$. Prove that $C K=A C$ is a necessary and sufficient condition for $D K \cdot E F=A C \cdot D F$.

3 There is a chessboard with m columns and n rows. In each blanks, an integer is given. If a rectangle R (in this chessboard) has an integer h satisfying the following two conditions, we
call R as a 'shelf'.
(i) All integers contained in R are bigger than h.
(ii) All integers in blanks, which are not contained in R but meet with R at a vertex or a side, are not bigger than h.
Assume that all integers are given to make shelves as much as possible. Find the number of shelves.

