

AoPS Community

Final Round - Korea 2012

www.artofproblemsolving.com/community/c3547 by syk0526

Day 1

1 Let x, y, z be positive real numbers. Prove that

$$\frac{2x^2 + xy}{(y + \sqrt{zx} + z)^2} + \frac{2y^2 + yz}{(z + \sqrt{xy} + x)^2} + \frac{2z^2 + zx}{(x + \sqrt{yz} + y)^2} \ge 1$$

2 For a triangle *ABC* which $\angle B \neq 90^{\circ}$ and $AB \neq AC$, define P_{ABC} as follows;

Let *I* be the incenter of triangle *ABC*, and let *D*, *E*, *F* be the intersection points with the incircle and segments *BC*, *CA*, *AB*. Two lines *AB* and *DI* meet at *S* and let *T* be the intersection point of line *DE* and the line which is perpendicular with *DF* at *F*. The line *ST* intersects line *EF* at *R*. Now define P_{ABC} be one of the intersection points of the incircle and the circle with diameter *IR*, which is located in other side with *A* about *IR*.

Now think of an isosceles triangle XYZ such that XZ = YZ > XY. Let W be the point on the side YZ such that WY < XY and Let $K = P_{YXW}$ and $L = P_{ZXW}$. Prove that $2KL \le XY$.

3 A_1, A_2, \dots, A_n are given subsets. Let $S = \{1, 2, \dots, n\}$. For any $X \subset S$, let

$$N(X) = \{i \in S - X \mid \forall j \in X, \ A_i \cap A_j \neq \emptyset\}$$

Let *m* be an integer such that $3 \le m \le n-2$. Prove that there exist $X \subset S$ such that |X| = m and $|N(X)| \ne 1$.

Day 2	
1	Let <i>ABC</i> be an acute triangle. Let <i>H</i> be the foot of perpendicular from <i>A</i> to <i>BC</i> . <i>D</i> , <i>E</i> are the points on <i>AB</i> , <i>AC</i> and let <i>F</i> , <i>G</i> be the foot of perpendicular from <i>D</i> , <i>E</i> to <i>BC</i> . Assume that $DG \cap EF$ is on <i>AH</i> . Let <i>P</i> be the foot of perpendicular from <i>E</i> to <i>DH</i> . Prove that $\angle APE = \angle CPE$.
2	Let <i>n</i> be a given positive integer. Prove that there exist infinitely many integer triples (x, y, z) such that $nx^2 + y^3 = z^4$, $gcd(x, y) = gcd(y, z) = gcd(z, x) = 1$.

AoPS Community

2012 Korea - Final Round

3 Let *M* be the set of positive integers which do not have a prime divisor greater than 3. For any infinite family of subsets of *M*, say A_1, A_2, \ldots , prove that there exist $i \neq j$ such that for each $x \in A_i$ there exists some $y \in A_j$ such that $y \mid x$.

Act of Problem Solving is an ACS WASC Accredited School.