AoPS Community

Final Round - Korea 2012

www.artofproblemsolving.com/community/c3547
by syk0526

Day 1

1 Let x, y, z be positive real numbers. Prove that

$$
\frac{2 x^{2}+x y}{(y+\sqrt{z x}+z)^{2}}+\frac{2 y^{2}+y z}{(z+\sqrt{x y}+x)^{2}}+\frac{2 z^{2}+z x}{(x+\sqrt{y z}+y)^{2}} \geq 1
$$

2 For a triangle $A B C$ which $\angle B \neq 90^{\circ}$ and $A B \neq A C$, define $P_{A B C}$ as follows;
Let I be the incenter of triangle $A B C$, and let D, E, F be the intersection points with the incircle and segments $B C, C A, A B$. Two lines $A B$ and $D I$ meet at S and let T be the intersection point of line $D E$ and the line which is perpendicular with $D F$ at F. The line $S T$ intersects line $E F$ at R. Now define $P_{A B C}$ be one of the intersection points of the incircle and the circle with diameter $I R$, which is located in other side with A about $I R$.

Now think of an isosceles triangle $X Y Z$ such that $X Z=Y Z>X Y$. Let W be the point on the side $Y Z$ such that $W Y<X Y$ and Let $K=P_{Y X W}$ and $L=P_{Z X W}$. Prove that $2 K L \leq X Y$.
$3 \quad A_{1}, A_{2}, \cdots, A_{n}$ are given subsets. Let $S=\{1,2, \cdots, n\}$. For any $X \subset S$, let

$$
N(X)=\left\{i \in S-X \mid \forall j \in X, A_{i} \cap A_{j} \neq \emptyset\right\}
$$

Let m be an integer such that $3 \leq m \leq n-2$. Prove that there exist $X \subset S$ such that $|X|=m$ and $|N(X)| \neq 1$.

Day 2

1 Let $A B C$ be an acute triangle. Let H be the foot of perpendicular from A to $B C . D, E$ are the points on $A B, A C$ and let F, G be the foot of perpendicular from D, E to $B C$. Assume that $D G \cap E F$ is on $A H$. Let P be the foot of perpendicular from E to $D H$. Prove that $\angle A P E=$ $\angle C P E$.

2 Let n be a given positive integer. Prove that there exist infinitely many integer triples (x, y, z) such that

$$
n x^{2}+y^{3}=z^{4}, \operatorname{gcd}(x, y)=\operatorname{gcd}(y, z)=\operatorname{gcd}(z, x)=1
$$

3 Let M be the set of positive integers which do not have a prime divisor greater than 3 . For any infinite family of subsets of M, say A_{1}, A_{2}, \ldots, prove that there exist $i \neq j$ such that for each $x \in A_{i}$ there exists some $y \in A_{j}$ such that $y \mid x$.

