

AoPS Community

Croatia Team Selection Test 2007

www.artofproblemsolving.com/community/c3551

by djuro, mornik, rik_sengupta, perfect_radio, orl, harazi

Day	I
1	Find integral solutions to the equation
	$(m^2 - n^2)^2 = 16n + 1.$
2	Prove that the sequence $a_n = \lfloor n\sqrt{2} \rfloor + \lfloor n\sqrt{3} \rfloor$ contains infinitely many even and infinitely many odd numbers.
3	Let <i>ABC</i> be a triangle such that $ AC > AB $. Let <i>X</i> be on line <i>AB</i> (closer to <i>A</i>) such that $ BX = AC $ and let <i>Y</i> be on the segment <i>AC</i> such that $ CY = AB $. Intersection of lines <i>XY</i> and bisector of <i>BC</i> is point <i>P</i> . Prove that $\angle BPC + \angle BAC = 180^{\circ}$.
4	Given a finite string <i>S</i> of symbols <i>X</i> and <i>O</i> , we write $@(S)$ for the number of <i>X</i> 's in <i>S</i> minus the number of <i>O</i> 's. (For example, $@(XOOXOOX) = -1$.) We call a string <i>S</i> balanced if every substring <i>T</i> of (consecutive symbols) <i>S</i> has the property $-2 \le @(T) \le 2$. (Thus <i>XOOXOOX</i> is not balanced since it contains the sub-string <i>OOXOO</i> whose @-value is -3 .) Find, with proof, the number of balanced strings of length <i>n</i> .
Day 2	
5	Let there be two circles. Find all points M such that there exist two points, one on each circle such that M is their midpoint.
6	$2n$ students $(n \ge 5)$ participated at table tennis contest, which took 4 days. In every day, every student played a match. (It is possible that the same pair meets twice or more times, in different days) Prove that it is possible that the contest ends like this:
	- there is only one winner;
	- there are 3 students on the second place;
	- no student lost all 4 matches.
	How many students won only a single match and how many won exactly 2 matches? (In the above conditions)

AoPS Community

2007 Croatia Team Selection Test

7 Let a, b, c > 0 such that a + b + c = 1. Prove:

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq 3(a^2 + b^2 + c^2)$$

8 Positive integers x > 1 and y satisfy an equation $2x^2 - 1 = y^{15}$. Prove that 5 divides x.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY