Art of Problem Solving

AoPS Community

Croatia Team Selection Test 2007

www.artofproblemsolving.com/community/c3551
by djuro, mornik, rik_sengupta, perfect_radio, orl, harazi

Day 1

1 Find integral solutions to the equation

$$
\left(m^{2}-n^{2}\right)^{2}=16 n+1
$$

2 Prove that the sequence $a_{n}=\lfloor n \sqrt{2}\rfloor+\lfloor n \sqrt{3}\rfloor$ contains infintely many even and infinitely many odd numbers.

3 Let $A B C$ be a triangle such that $|A C|>|A B|$. Let X be on line $A B$ (closer to A) such that $|B X|=|A C|$ and let Y be on the segment $A C$ such that $|C Y|=|A B|$. Intersection of lines $X Y$ and bisector of $B C$ is point P. Prove that $\angle B P C+\angle B A C=180^{\circ}$.

4 Given a finite string S of symbols X and O, we write @ (S) for the number of X 's in S minus the number of O 's. (For example, @ $(X O O X O O X)=-1$.) We call a string S balanced if every substring T of (consecutive symbols) S has the property $-2 \leq @(T) \leq 2$. (Thus XOOXOOX is not balanced since it contains the sub-string $O O X O O$ whose @-value is -3 .) Find, with proof, the number of balanced strings of length n.

Day 2

5 Let there be two circles. Find all points M such that there exist two points, one on each circle such that M is their midpoint.
$6 \quad 2 n$ students $(n \geq 5)$ participated at table tennis contest, which took 4 days. In every day, every student played a match. (It is possible that the same pair meets twice or more times, in different days) Prove that it is possible that the contest ends like this:

- there is only one winner;
- there are 3 students on the second place;
- no student lost all 4 matches.

How many students won only a single match and how many won exactly 2 matches? (In the above conditions)

7 Let $a, b, c>0$ such that $a+b+c=1$. Prove:

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \geq 3\left(a^{2}+b^{2}+c^{2}\right)
$$

8 Positive integers $x>1$ and y satisfy an equation $2 x^{2}-1=y^{15}$. Prove that 5 divides x.

