

AoPS Community

-

_

2008 Croatia Team Selection Test

Croatia Team Selection Test 2008

www.artofproblemsolving.com/community/c3552 by April, easternlatincup

1	Let <i>x</i> , <i>y</i> , <i>z</i> be positive numbers. Find the minimum value of: (<i>a</i>) $\frac{x^2+y^2+z^2}{xy+yz}$ (<i>b</i>) $\frac{x^2+y^2+2z^2}{xy+yz}$
2	For which $n \in \mathbb{N}$ do there exist rational numbers a, b which are not integers such that both $a+b$ and $a^n + b^n$ are integers?
3	Point <i>M</i> is taken on side <i>BC</i> of a triangle <i>ABC</i> such that the centroid T_c of triangle <i>ABM</i> lies on the circumcircle of $\triangle ACM$ and the centroid T_b of $\triangle ACM$ lies on the circumcircle of $\triangle ABM$. Prove that the medians of the triangles <i>ABM</i> and <i>ACM</i> from <i>M</i> are of the same length.
4	Let S be the set of all odd positive integers less than $30m$ which are not multiples of 5, where m is a given positive integer. Find the smallest positive integer k such that each k -element subset of S contains two distinct numbers, one of which divides the other.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱