AoPS Community

Croatia Team Selection Test 2008

www.artofproblemsolving.com/community/c3552
by April, easternlatincup

1 Let x, y, z be positive numbers. Find the minimum value of: (a) $\frac{x^{2}+y^{2}+z^{2}}{x y+y z}$
(b) $\frac{x^{2}+y^{2}+2 z^{2}}{x y+y z}$

2 For which $n \in \mathbb{N}$ do there exist rational numbers a, b which are not integers such that both $a+b$ and $a^{n}+b^{n}$ are integers?

3 Point M is taken on side $B C$ of a triangle $A B C$ such that the centroid T_{c} of triangle $A B M$ lies on the circumcircle of $\triangle A C M$ and the centroid T_{b} of $\triangle A C M$ lies on the circumcircle of $\triangle A B M$. Prove that the medians of the triangles $A B M$ and $A C M$ from M are of the same length.

4 Let S be the set of all odd positive integers less than 30 m which are not multiples of 5 , where m is a given positive integer. Find the smallest positive integer k such that each k-element subset of S contains two distinct numbers, one of which divides the other.

