Art of Problem Solving

AoPS Community

Croatia Team Selection Test 2009

www.artofproblemsolving.com/community/c3553
by Matematika, djuro

- MEMO TST 1

1 Prove for all positive reals a, b, c, d :
$\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b} \geq 0$
2 On sport games there was 1991 participant from which every participant knows at least n other participants(friendship is mutual). Determine the lowest possible n for which we can be sure that there are 6 participants between which any two participants know each other.
$3 \quad$ On sides $A B$ and $A C$ of triangle $A B C$ there are given points D, E such that $D E$ is tangent of circle inscribed in triangle $A B C$ and $D E \| B C$. Prove $A B+B C+C A \geq 8 D E$

4 Prove that there are infinite many positive integers n such that $n^{2}+1 \mid n!$, and infinite many of those for which $n^{2}+1 \nmid n$!.

- MEMO TST 2

1 Determine the lowest positive integer n such that following statement is true: If polynomial with integer coefficients gets value 2 for n different integers, then it can't take value 4 for any integer.

2 In each field of 2009*2009 table you can write either 1 or -1 .
Denote Ak multiple of all numbers in k -th row and Bj the multiple of all numbers in j -th column. Is it possible to write the numbers in such a way that $\sum_{i=1}^{2009} A i+\sum_{i=1}^{2009} B i=0$?

3 It is given a convex quadrilateral $A B C D$ in which $\angle B+\angle C<180^{\circ}$.
Lines $A B$ and $C D$ intersect in point E . Prove that $C D * C E=A C^{2}+A B * A E \leftrightarrow \angle B=\angle D$
4 Determine all triplets off positive integers (a, b, c) for which $\left|2^{a}-b^{c}\right|=1$

- IMO TST

1 Solve in the set of real numbers:

$$
\begin{gathered}
3\left(x^{2}+y^{2}+z^{2}\right)=1, \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=x y z(x+y+z)^{3} .
\end{gathered}
$$

2 Every natural number is coloured in one of the k colors. Prove that there exist four distinct natural numbers a, b, c, d, all coloured in the same colour, such that $a d=b c, \frac{b}{a}$ is power of 2 and $\frac{c}{a}$ is power of 3 .
$3 \quad$ A triangle $A B C$ is given with $|A B|>|A C|$. Line l tangents in a point A the circumcirle of $A B C$. A circle centered in A with radius $|A C|$ cuts $A B$ in the point D and the line l in points E, F (such that C and E are in the same halfplane with respect to $A B$). Prove that the line $D E$ passes through the incenter of $A B C$.

4 Determine all natural n for which there exists natural m divisible by all natural numbers from 1 to n but not divisible by any of the numbers $n+1, n+2, n+3$.

