

AoPS Community

Croatia Team Selection Test 2009 www.artofproblemsolving.com/community/c3553 by Matematika, djuro

-	MEMO TST 1
1	Prove for all positive reals a,b,c,d:
	$\frac{a-b}{b+c} + \frac{b-c}{c+d} + \frac{c-d}{d+a} + \frac{d-a}{a+b} \ge 0$
2	On sport games there was 1991 participant from which every participant knows at least n other participants(friendship is mutual). Determine the lowest possible n for which we can be sure that there are 6 participants between which any two participants know each other.
3	On sides AB and AC of triangle ABC there are given points D, E such that DE is tangent of circle inscribed in triangle ABC and $DE \parallel BC$. Prove $AB + BC + CA \ge 8DE$
4	Prove that there are infinite many positive integers n such that $n^2 + 1 \mid n!$, and infinite many of those for which $n^2 + 1 \nmid n!$.
-	MEMO TST 2
1	Determine the lowest positive integer n such that following statement is true: If polynomial with integer coefficients gets value 2 for n different integers, then it can't take value 4 for any integer.
2	In each field of 2009*2009 table you can write either 1 or -1. Denote Ak multiple of all numbers in k-th row and Bj the multiple of all numbers in j-th column. Is it possible to write the numbers in such a way that $\sum_{i=1}^{2009} Ai + \sum_{i=1}^{2009} Bi = 0$?
3	It is given a convex quadrilateral $ABCD$ in which $\angle B + \angle C < 180^{\circ}$. Lines AB and CD intersect in point E. Prove that $CD * CE = AC^{2} + AB * AE \leftrightarrow \angle B = \angle D$
4	Determine all triplets off positive integers (a, b, c) for which $ 2^a - b^c = 1$
-	IMO TST
1	Solve in the set of real numbers:
	$3(x^2 + y^2 + z^2) = 1,$

$$x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} = xyz (x + y + z)^{3}.$$

AoPS Community

2009 Croatia Team Selection Test

- **2** Every natural number is coloured in one of the *k* colors. Prove that there exist four distinct natural numbers *a*, *b*, *c*, *d*, all coloured in the same colour, such that ad = bc, $\frac{b}{a}$ is power of 2 and $\frac{c}{a}$ is power of 3.
- **3** A triangle ABC is given with |AB| > |AC|. Line *l* tangents in a point *A* the circumcirle of ABC. A circle centered in *A* with radius |AC| cuts AB in the point *D* and the line *l* in points *E*, *F* (such that *C* and *E* are in the same halfplane with respect to *AB*). Prove that the line *DE* passes through the incenter of *ABC*.
- **4** Determine all natural n for which there exists natural m divisible by all natural numbers from 1 to n but not divisible by any of the numbers n + 1, n + 2, n + 3.

Act of Problem Solving is an ACS WASC Accredited School.