

AoPS Community

2005 Croatia National Olympiad

Croatia National Olympiad 2005

www.artofproblemsolving.com/community/c3555 by N.T.TUAN, nayel, Svejk, Sepp

-	Grade level 9
-	May 6th
1	Find all possible digits x, y, z such that the number $\overline{13xy45z}$ is divisible by 792.
2	The lines joining the incenter of a triangle to the vertices divide the triangle into three triangles. If one of these triangles is similar to the initial one,determine the angles of the triangle.
3	If k, l, m are positive integers with $\frac{1}{k} + \frac{1}{l} + \frac{1}{m} < 1$, nd the maximum possible value of $\frac{1}{k} + \frac{1}{l} + \frac{1}{m}$.
4	The circumradius R of a triangle with side lengths a, b, c satises $R = \frac{a\sqrt{bc}}{b+c}$. Find the angles of the triangle.
-	Grade level 10
-	May 6th
1	Let $a \neq 0, b, c$ be real numbers. If x_1 is a root of the equation $ax^2 + bx + c = 0$ and x_2 a root of $-ax^2 + bx + c = 0$, show that there is a root x_3 of $\frac{a}{2} \cdot x^2 + bx + c = 0$ between x_1 and x_2 .
2	Let U be the incenter of a triangle ABC and O_1, O_2, O_3 be the circumcenters of the triangles BCU, CAU, ABU , respectively. Prove that the circumcircles of the triangles ABC and $O_1O_2O_3$ have the same center.
3	If a, b, c are real numbers greater than 1, prove that for any real number r
	$(\log_a bc)^r + (\log_b ca)^r + (\log_c ab)^r \ge 3 \cdot 2^r.$
4	Show that in any set of eleven integers there are six whose sum is divisible by 6.
-	Grade level 11
-	May 6th

AoPS Community

2005 Croatia National Olympiad

1 Find all positive integer solutions of the equation k!l! = k! + l! + m!. 2 The incircle of a triangle ABC touches AC, BC, and AB at M, N, and R, respectively. Let S be a point on the smaller arc MN and t be the tangent to this arc at S. The line t meets NCat P and MC at Q. Prove that the lines AP, BQ, SR, MN have a common point. 3 Find the locus of points inside a trihedral angle such that the sum of their distances from the faces of the trihedral angle has a xed positive value a. The vertices of a regular 2005-gon are colored red, white and blue. Whenever two vertices of 4 different colors stand next to each other, we are allowed to recolor them into the third color. (a) Prove that there exists a nite sequence of allowed recolorings after which all the vertices are of the same color. (b) Is that color uniquely determined by the initial coloring? Grade level 12 May 6th 1 A sequence (a_n) is dened by $a_1 = 1$ and $a_n = a_1 a_2 \dots a_{n-1} + 1$ for $n \ge 2$. Find the smallest real number M such that $\sum_{n=1}^{m} \frac{1}{a_n} < M \ \forall m \in \mathbb{N}.$ 2 Let P(x) be a monic polynomial of degree n with nonnegative coefficients and the free term equal to 1. Prove that if all the roots of P(x) are real, then $P(x) \ge (x+1)^n$ holds for every $x \ge 0$. 3 Show that there is a unique positive integer which consists of the digits 2 and 5, having 2005 digits and divisible by 2^{2005} . Let P and Q be points on the sides BC and CD of a convex quadrilateral ABCD, respectively, 4 such that $\angle BAP = \angle DAQ$. Prove that the triangles ABP and ADQ have equal area if and only if the line joining their orthocenters is perpendicular to AC.

AoPS Online 🔯 AoPS Academy 🗿 AoPS & Cademy

Art of Problem Solving is an ACS WASC Accredited School.