Art of Problem Solving

AoPS Community

Croatia National Olympiad 2005

www.artofproblemsolving.com/community/c3555
by N.T.TUAN, nayel, Svejk, Sepp

- \quad Grade level 9
- May 6th

1 Find all possible digits x, y, z such that the number $\overline{13 x y 45 z}$ is divisible by 792 .

2 The lines joining the incenter of a triangle to the vertices divide the triangle into three triangles. If one of these triangles is similar to the initial one,determine the angles of the triangle.

3 If k, l, m are positive integers with $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}<1$, nd the maximum possible value of $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}$.

4 The circumradius R of a triangle with side lengths a, b, c satises $R=\frac{a \sqrt{b c}}{b+c}$. Find the angles of the triangle.

- \quad Grade level 10

- May 6th

1 Let $a \neq 0, b, c$ be real numbers. If x_{1} is a root of the equation $a x^{2}+b x+c=0$ and x_{2} a root of $-a x^{2}+b x+c=0$, show that there is a root x_{3} of $\frac{a}{2} \cdot x^{2}+b x+c=0$ between x_{1} and x_{2}.

2 Let U be the incenter of a triangle $A B C$ and O_{1}, O_{2}, O_{3} be the circumcenters of the triangles $B C U, C A U, A B U$, respectively. Prove that the circumcircles of the triangles $A B C$ and $O_{1} O_{2} O_{3}$ have the same center.

3 If a, b, c are real numbers greater than 1 , prove that for any real number r

$$
\left(\log _{a} b c\right)^{r}+\left(\log _{b} c a\right)^{r}+\left(\log _{c} a b\right)^{r} \geq 3 \cdot 2^{r} .
$$

4 Show that in any set of eleven integers there are six whose sum is divisible by 6 .

- Grade level 11
- May 6th

AoPS Community

1 Find all positive integer solutions of the equation $k!l!=k!+l!+m!$.
2 The incircle of a triangle $A B C$ touches $A C, B C$, and $A B$ at M, N, and R, respectively. Let S be a point on the smaller arc $M N$ and t be the tangent to this arc at S. The line t meets $N C$ at P and $M C$ at Q. Prove that the lines $A P, B Q, S R, M N$ have a common point.

3 Find the locus of points inside a trihedral angle such that the sum of their distances from the faces of the trihedral angle has a xed positive value a.

4 The vertices of a regular 2005-gon are colored red, white and blue. Whenever two vertices of different colors stand next to each other, we are allowed to recolor them into the third color.
(a) Prove that there exists a nite sequence of allowed recolorings after which all the vertices are of the same color.
(b) Is that color uniquely determined by the initial coloring?

- \quad Grade level 12
- May 6th

1 A sequence $\left(a_{n}\right)$ is dened by $a_{1}=1$ and $a_{n}=a_{1} a_{2} \ldots a_{n-1}+1$ for $n \geq 2$. Find the smallest real number M such that $\sum_{n=1}^{m} \frac{1}{a_{n}}<M \forall m \in \mathbb{N}$.

2 Let $P(x)$ be a monic polynomial of degree n with nonnegative coefficients and the free term equal to 1 . Prove that if all the roots of $P(x)$ are real, then $P(x) \geq(x+1)^{n}$ holds for every $x \geq 0$.

3 Show that there is a unique positive integer which consists of the digits 2 and 5, having 2005 digits and divisible by 2^{2005}.

4 Let P and Q be points on the sides $B C$ and $C D$ of a convex quadrilateral $A B C D$, respectively, such that $\angle B A P=\angle D A Q$. Prove that the triangles $A B P$ and $A D Q$ have equal area if and only if the line joining their orthocenters is perpendicular to $A C$.

