AoPS Community

IMS 2006

www.artofproblemsolving.com/community/c3561
by Omid Hatami

1 Prove that for each $m \geq 1$:

$$
\sum_{|k|<\sqrt{m}}\binom{2 m}{m+k} \geq 2^{2 m-1}
$$

Maybe probabilistic method works
2 For each subset C of \mathbb{N}, Suppose $C \oplus C=\{x+y \mid x, y \in C, x \neq y\}$. Prove that there exist a unique partition of \mathbb{N} to sets A, B that $A \oplus A$ and $B \oplus B$ do not have any prime numbers.
$3 G$ is a group that order of each element of it Commutator group is finite. Prove that subset of all elemets of G which have finite order is a subgroup og G.

4 Assume that X is a seperable metric space. Prove that if $f: X \longrightarrow \mathbb{R}$ is a function that $\lim _{x \rightarrow a} f(x)$ exists for each $a \in \mathbb{R}$. Prove that set of points in which f is not continuous is countable.

5 Suppose that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{C}$ that for each $1 \leq i \leq k$ we know that $\left|a_{k}\right|=1$. Suppose that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{k} a_{i}^{n}=c
$$

Prove that $c=k$ and $a_{i}=1$ for each i.

