

AoPS Community

IMS 2006

www.artofproblemsolving.com/community/c3561 by Omid Hatami

1 Prove that for each $m \ge 1$:

$$\sum_{k|<\sqrt{m}} \binom{2m}{m+k} \ge 2^{2m-1}$$

Maybe probabilistic method works

- **2** For each subset *C* of \mathbb{N} , Suppose $C \oplus C = \{x + y | x, y \in C, x \neq y\}$. Prove that there exist a unique partition of \mathbb{N} to sets *A*, *B* that $A \oplus A$ and $B \oplus B$ do not have any prime numbers.
- **3** *G* is a group that order of each element of it Commutator group is finite. Prove that subset of all elemets of *G* which have finite order is a subgroup og *G*.
- **4** Assume that *X* is a seperable metric space. Prove that if $f : X \longrightarrow \mathbb{R}$ is a function that $\lim_{x\to a} f(x)$ exists for each $a \in \mathbb{R}$. Prove that set of points in which *f* is not continuous is countable.
- **5** Suppose that $a_1, a_2, \ldots, a_k \in \mathbb{C}$ that for each $1 \le i \le k$ we know that $|a_k| = 1$. Suppose that

$$\lim_{n \to \infty} \sum_{i=1}^{k} a_i^n = c.$$

Prove that c = k and $a_i = 1$ for each i.

Art of Problem Solving is an ACS WASC Accredited School.

🔞 AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱