

AoPS Community

IMS 2007

www.artofproblemsolving.com/community/c3562 by Omid Hatami

- **1** Suppose there exists a group with exactly *n* subgroups of index 2. Prove that there exists a finite abelian group *G* that has exactly *n* subgroups of index 2.
- **2** Does there exist two unfair dices such that probability of their sum being j be a number in $(\frac{2}{33}, \frac{4}{33})$ for each $2 \le j \le 12$?
- **3** Prove that \mathbb{R}^2 has a dense subset such that has no three collinear points.

4 Prove that:

	tr(A)	1	0			0
$\det(A) = \frac{1}{n!}$	$\operatorname{tr}(A^2)$	$\operatorname{tr}(A)$	2	0		0
	${\rm tr}(A^3)$	${\rm tr}(A^2)$	$\operatorname{tr}(A)$	3		÷
	\vdots tr(A^n)	$\operatorname{tr}(A^{n-1})$	$\operatorname{tr}(A^{n-2})$			$\begin{bmatrix} n-1 \\ \operatorname{tr}(A) \end{bmatrix}$
	••(11)	(11)	u (11)		•••	((11)

5 Find all real α, β such that the following limit exists and is finite:

$$\lim_{x,y\to 0^+} \frac{x^{2\alpha}y^{2\beta}}{x^{2\alpha}+y^{3\beta}}$$

- **6** Let R be a commutative ring with 1. Prove that R[x] has infinitely many maximal ideals.
- 7 x_1, x_2, \ldots, x_n are real number such that for each *i*, the set $\{x_1, x_2, \ldots, x_n\} \setminus \{x_i\}$ could be partitioned into two sets that sum of elements of first set is equal to the sum of the elements of the other. Prove that all of x_i 's are zero. It is a number theory problem.
- 8 Let

$$T = \{ (tq, 1-t) \in \mathbb{R}^2 | t \in [0, 1], q \in \mathbb{Q} \}$$

Prove that each continuous function $f: T \longrightarrow T$ has a fixed point.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.