AoPS Community

IMS 2007

www.artofproblemsolving.com/community/c3562
by Omid Hatami

1 Suppose there exists a group with exactly n subgroups of index 2. Prove that there exists a finite abelian group G that has exactly n subgroups of index 2 .

2 Does there exist two unfair dices such that probability of their sum being j be a number in $\left(\frac{2}{33}, \frac{4}{33}\right)$ for each $2 \leq j \leq 12$?

3 Prove that \mathbb{R}^{2} has a dense subset such that has no three collinear points.
4 Prove that:

$$
\operatorname{det}(A)=\frac{1}{n!}\left|\begin{array}{llllll}
\operatorname{tr}(A) & 1 & 0 & \ldots & \ldots & 0 \\
\operatorname{tr}\left(A^{2}\right) & \operatorname{tr}(A) & 2 & 0 & \ldots & 0 \\
\operatorname{tr}\left(A^{3}\right) & \operatorname{tr}\left(A^{2}\right) & \operatorname{tr}(A) & 3 & & \vdots \\
\vdots & & & & & n-1 \\
\operatorname{tr}\left(A^{n}\right) & \operatorname{tr}\left(A^{n-1}\right) & \operatorname{tr}\left(A^{n-2}\right) & \ldots & \ldots & \operatorname{tr}(A)
\end{array}\right|
$$

5 Find all real α, β such that the following limit exists and is finite:

$$
\lim _{x, y \rightarrow 0^{+}} \frac{x^{2 \alpha} y^{2 \beta}}{x^{2 \alpha}+y^{3 \beta}}
$$

$6 \quad$ Let R be a commutative ring with 1 . Prove that $R[x]$ has infinitely many maximal ideals.
$7 x_{1}, x_{2}, \ldots, x_{n}$ are real number such that for each i, the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \backslash\left\{x_{i}\right\}$ could be partitioned into two sets that sum of elements of first set is equal to the sum of the elements of the other. Prove that all of x_{i} 's are zero.
It is a number theory problem.
8 Let

$$
T=\left\{(t q, 1-t) \in \mathbb{R}^{2} \mid t \in[0,1], q \in \mathbb{Q}\right\}
$$

Prove that each continuous function $f: T \longrightarrow T$ has a fixed point.

