

AoPS Community

IMS 2008

www.artofproblemsolving.com/community/c3563 by Omid Hatami

1 Let A_1, A_2, \ldots, A_n be idempotent matrices with real entries. Prove that: $N(A_1) + N(A_2) + \cdots + N(A_n) \ge \operatorname{rank}(I - A_1A_2 \dots A_n)$ N(A) is dim(ker(A)) Let f be an entire function on \mathbb{C} and ω_1, ω_2 are complex numbers such that $\frac{\omega_1}{\omega_2} \in \mathbb{C} \setminus \mathbb{Q}$. Prove 2 that if for each $z \in \mathbb{C}$, $f(z) = f(z + \omega_1) = f(z + \omega_2)$ then f is constant. 3 Let A, B be different points on a parabola. Prove that we can find P_1, P_2, \ldots, P_n between A, Bon the parabola such that area of the convex polygon $AP_1P_2 \dots P_nB$ is maximum. In this case prove that the ratio of $S(AP_1P_2...P_nB)$ to the sector between A and B doesn't depend on A and B, and only depends on n. 4 A subset of $n \times n$ table is called even if it contains even elements of each row and each column. Find the minimum k such that each subset of this table with k elements contains an even subset Prove that there does not exist a ring with exactly 5 regular elements. 5 (a is called a regular element if ax = 0 or xa = 0 implies x = 0.) A ring is not necessarily commutative, does not necessarily contain unity element, or is not necessarily finite. 6 Let $a_0, a_1, \ldots, a_{n+1}$ be natural numbers such that $a_0 = a_{n+1} = 1$, $a_i > 1$ for all $1 \le i \le n$, and for each $1 \le j \le n$, $a_i | a_{i-1} + a_{i+1}$. Prove that there exist one 2 in the sequence. 7 In a contest there are n yes-no problems. We know that no two contestants have the same set of answers. To each question we give a random uniform grade of set $\{1, 2, 3, \dots, 2n\}$. Prove that the probability that exactly one person gets first is at least $\frac{1}{2}$. 8 Find all natural numbers such that

 $n\sigma(n) \equiv 2 \pmod{\phi(n)}$

AoPS Community

9 Let $\gamma: [0,1] \rightarrow [0,1] \times [0,1]$ be a mapping such that for each $s,t \in [0,1]$

$$|\gamma(s) - \gamma(t)| \le M|s - t|^{\alpha}$$

in which α , M are fixed numbers. Prove that if γ is surjective, then $\alpha \leq \frac{1}{2}$

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱