AoPS Community

IMS 2008

www.artofproblemsolving.com/community/c3563
by Omid Hatami

1 Let $A_{1}, A_{2}, \ldots, A_{n}$ be idempotent matrices with real entries. Prove that:

$$
\mathrm{N}\left(A_{1}\right)+\mathrm{N}\left(A_{2}\right)+\cdots+\mathrm{N}\left(A_{n}\right) \geq \operatorname{rank}\left(I-A_{1} A_{2} \ldots A_{n}\right)
$$

$\mathrm{N}(A)$ is $\operatorname{dim}(\operatorname{ker}(\mathrm{A}))$
2 Let f be an entire function on \mathbb{C} and ω_{1}, ω_{2} are complex numbers such that $\frac{\omega_{1}}{\omega_{2}} \in \mathbb{C} \backslash \mathbb{Q}$. Prove that if for each $z \in \mathbb{C}, f(z)=f\left(z+\omega_{1}\right)=f\left(z+\omega_{2}\right)$ then f is constant.

3 Let A, B be different points on a parabola. Prove that we can find $P_{1}, P_{2}, \ldots, P_{n}$ between A, B on the parabola such that area of the convex polygon $A P_{1} P_{2} \ldots P_{n} B$ is maximum. In this case prove that the ratio of $S\left(A P_{1} P_{2} \ldots P_{n} B\right)$ to the sector between A and B doesn't depend on A and B, and only depends on n.

4 A subset of $n \times n$ table is called even if it contains even elements of each row and each column. Find the minimum k such that each subset of this table with k elements contains an even subset

5 Prove that there does not exist a ring with exactly 5 regular elements.
(a is called a regular element if $a x=0$ or $x a=0$ implies $x=0$.)
A ring is not necessarily commutative, does not necessarily contain unity element, or is not necessarily finite.

6 Let $a_{0}, a_{1}, \ldots, a_{n+1}$ be natural numbers such that $a_{0}=a_{n+1}=1$, $a_{i}>1$ for all $1 \leq i \leq n$, and for each $1 \leq j \leq n, a_{i} \mid a_{i-1}+a_{i+1}$. Prove that there exist one 2 in the sequence.
$7 \quad$ In a contest there are n yes-no problems. We know that no two contestants have the same set of answers. To each question we give a random uniform grade of set $\{1,2,3, \ldots, 2 n\}$. Prove that the probability that exactly one person gets first is at least $\frac{1}{2}$.

8 Find all natural numbers such that

$$
n \sigma(n) \equiv 2 \quad(\bmod \phi(n))
$$

9 Let $\gamma:[0,1] \rightarrow[0,1] \times[0,1]$ be a mapping such that for each $s, t \in[0,1]$

$$
|\gamma(s)-\gamma(t)| \leq M|s-t|^{\alpha}
$$

in which α, M are fixed numbers. Prove that if γ is surjective, then $\alpha \leq \frac{1}{2}$

