Art of Problem Solving

AoPS Community

IMS 2014

www.artofproblemsolving.com/community/c3565
by wiseman

Day 1

1 Let A be a subset of the irrational numbers such that the sum of any two distinct elements of it be a rational number. Prove that A has two elements at most.

2 Let (X, d) be a nonempty connected metric space such that the limit of every convergent sequence, is a term of that sequence. Prove that X has exactly one element.

3 Let R be a commutative ring with 1 such that the number of elements of R is equal to p^{3} where p is a prime number. Prove that if the number of elements of $\operatorname{zd}(R)$ be in the form of $p^{n}\left(n \in \mathbb{N}^{*}\right)$ where $\operatorname{zd}(R)=\{a \in R \mid \exists 0 \neq b \in R, a b=0\}$, then R has exactly one maximal ideal.
$4 \quad$ Let (X, d) be a metric space and $f: X \rightarrow X$ be a function such that $\forall x, y \in X: d(f(x), f(y))=$ $d(x, y)$. a) Prove that for all $x \in X, \lim _{n \rightarrow+\infty} \frac{d\left(x, f^{n}(x)\right)}{n}$ exists, where $f^{n}(x)$ is $\underbrace{f(f(\cdots f(x)}_{n \text { times }} \cdots))$.
b) Prove that the amount of the limit does not depend on choosing x.
$5 \quad$ Let G_{1} and G_{2} be two finite groups such that for any finite group H, the number of group homomorphisms from G_{1} to H is equal to the number of group homomorphisms from G_{2} to H. Prove that G_{1} and G_{2} are Isomorphic.

6 Let $A=\left[a_{i j}\right]_{n \times n}$ be a $n \times n$ matrix whose elements are all numbers which belong to set $\{1,2, \cdots, n\}$. Prove that by swapping the columns of A with each other we can produce matrix $B=\left[b_{i j}\right]_{n \times n}$ such that $K(B) \leq n$ where $K(B)$ is the number of elements of set $\left\{(i, j) ; b_{i j}=j\right\}$.

Day 2

7 Let G be a finite group such that for every two subgroups of it like H and $K, H \cong K$ or $H \subseteq K$ or $K \subseteq H$. Prove that we can produce each subgroup of G with 2 elements at most.

8 Is $\sum_{n=1}^{+\infty} \frac{\cos n}{n}\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}\right)$ convergent? why?
9 Let G be a $2 n$-vertices simple graph such that in any partition of the set of vertices of G into two n-vertices sets V_{1} and V_{2}, the number of edges from a vertex in V_{1} to another vertex in V_{1} is equal to the number of edges from a vertex in V_{2} to another vertex in V_{2}. Prove that all the vertices have equal degrees.

10 Let V be a n-dimensional vector space over a field F with a basis $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$.Prove that for any m-dimensional linear subspace W of V, the number of elements of the set $W \cap P$ is less than or equal to 2^{m} where $P=\left\{\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{n} e_{n}: \lambda_{i}=0,1\right\}$.

11 Let the equation $a^{2}+b^{2}+1=a b c$ have answer in \mathbb{N}. Prove that $c=3$.
12 Let U be an open subset of the complex plane \mathbb{C} including $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ and f be analytic over U. Prove that if for every z with a complex norm equal to $1(|z|=1)$ we have $0<\operatorname{Re}(\bar{z} f(z))$, then f has only one root in \mathbb{D} and that's simple.

