

AoPS Community

IMS 2014

www.artofproblemsolving.com/community/c3565 by wiseman

Day 1	
1	Let A be a subset of the irrational numbers such that the sum of any two distinct elements of it be a rational number. Prove that A has two elements at most.
2	Let (X, d) be a nonempty connected metric space such that the limit of every convergent sequence, is a term of that sequence. Prove that X has exactly one element.
3	Let R be a commutative ring with 1 such that the number of elements of R is equal to p^3 where p is a prime number. Prove that if the number of elements of $zd(R)$ be in the form of p^n ($n \in \mathbb{N}^*$) where $zd(R) = \{a \in R \mid \exists 0 \neq b \in R, ab = 0\}$, then R has exactly one maximal ideal.
4	Let (X, d) be a metric space and $f : X \to X$ be a function such that $\forall x, y \in X : d(f(x), f(y)) = d(x, y)$. a) Prove that for all $x \in X$, $\lim_{n \to +\infty} \frac{d(x, f^n(x))}{n}$ exists, where $f^n(x)$ is $\underbrace{f(f(\cdots f(x) \cdots))}_{n \text{ times}}$. b) Prove that the amount of the limit does <u>not</u> depend on choosing x .
5	Let G_1 and G_2 be two finite groups such that for any finite group H , the number of group homomorphisms from G_1 to H is equal to the number of group homomorphisms from G_2 to H . Prove that G_1 and G_2 are Isomorphic.
6	Let $A = [a_{ij}]_{n \times n}$ be a $n \times n$ matrix whose elements are all numbers which belong to set $\{1, 2, \dots, n\}$. Prove that by swapping the columns of A with each other we can produce matrix $B = [b_{ij}]_{n \times n}$ such that $K(B) \leq n$ where $K(B)$ is the number of elements of set $\{(i, j); b_{ij} = j\}$.
 Day 2	

Day	2
7	Let G be a finite group such that for every two subgroups of it like H and K, $H \cong K$ or $H \subseteq K$ or $K \subseteq H$. Prove that we can produce each subgroup of G with 2 elements at most.
8	Is $\sum_{n=1}^{+\infty} \frac{\cos n}{n} (1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}})$ convergent? why?
9	Let G be a $2n$ -vertices simple graph such that in any partition of the set of vertices of G into two n -vertices sets V_1 and V_2 the number of edges from a vertex in V_1 to another vertex in V_2

Let G be a 2n-vertices simple graph such that in any partition of the set of vertices of G into two n-vertices sets V_1 and V_2 , the number of edges from a vertex in V_1 to another vertex in V_1 is equal to the number of edges from a vertex in V_2 to another vertex in V_2 . Prove that all the vertices have equal degrees.

2014 IMS

AoPS Community

10	Let V be a n -dimensional vector space over a field F with a basis $\{e_1, e_2, \dots, e_n\}$. Prove that for any m -dimensional linear subspace W of V, the number of elements of the set $W \cap P$ is less than or equal to 2^m where $P = \{\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n : \lambda_i = 0, 1\}$.
11	Let the equation $a^2 + b^2 + 1 = abc$ have answer in N.Prove that $c = 3$.
12	Let U be an open subset of the complex plane \mathbb{C} including $\mathbb{D} = \{z \in \mathbb{C} : z \leq 1\}$ and f be analytic over U. Prove that if for every z with a complex norm equal to $1(z = 1)$ we have $0 < Re(\overline{z}f(z))$, then f has only one root in \mathbb{D} and that's simple.

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.