AoPS Community

Macedonia National Olympiad 2000

www.artofproblemsolving.com/community/c3566
by WakeUp

1 Let $A B$ be a diameter of a circle with centre O, and $C D$ be a chord perpendicular to $A B$. A chord $A E$ intersects $C O$ at M, while $D E$ and $B C$ intersect at N. Prove that $C M: C O=C N: C B$.

2 If $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are positive numbers, find the maximum value of

$$
\frac{a_{1} a_{2} \ldots a_{n-1} a_{n}}{\left(1+a_{1}\right)\left(a_{1}+a_{2}\right) \ldots\left(a_{n-1}+a_{n}\right)\left(a_{n}+2^{n+1}\right)}
$$

3 In a triangle with sides $a, b, c, t_{a}, t_{b}, t_{c}$ are the corresponding medians and D the diameter of the circumcircle. Prove that

$$
\frac{a^{2}+b^{2}}{t_{c}}+\frac{b^{2}+c^{2}}{t_{a}}+\frac{c^{2}+a^{2}}{t_{b}} \leq 6 D
$$

4 Let a, b be coprime positive integers. Show that the number of positive integers n for which the equation $a x+b y=n$ has no positive integer solutions is equal to $\frac{(a-1)(b-1)}{2}-1$.

