

AoPS Community

Macedonia National Olympiad 2001

www.artofproblemsolving.com/community/c3567 by WakeUp

1	Prove that if m and s are integers with $ms = 2000^{2001}$, then the equation $mx^2 - sy^2 = 3$ has no integer solutions.
2	Does there exist a function $f:\mathbb{N} \to \mathbb{N}$ such that
	$f(f(n-1) = f(n+1) - f(n) \text{for all } n \ge 2?$
3	Let <i>ABC</i> be a scalene triangle and <i>k</i> be its circumcircle. Let t_A, t_B, t_C be the tangents to <i>k</i> at <i>A</i> , <i>B</i> , <i>C</i> , respectively. Prove that points $AB \cap t_C$, $CA \cap t_B$, and $BC \cap t_A$ exist, and that they are collinear.
4	Let Ω be a family of subsets of M such that:
	(i) If $ A \cap B \ge 2$ for $A, B \in \Omega$, then $A = B$; (ii) There exist different subsets $A, B, C \in \Omega$ with $ A \cap B \cap C = 1$; (iii) For every $A \in \Omega$ and $a \in M A$, there is a unique $B \in \Omega$ such that $a \in B$ and $A \cap B = \emptyset$.
	Prove that there are numbers p and s such that:

(1) Each $a \in M$ is contained in exactly p sets in Ω ; (2) |A| = s for all $A \in \Omega$; (3) $s + 1 \ge p$.

Act of Problem Solving is an ACS WASC Accredited School.