AoPS Community

Macedonia National Olympiad 2001

www.artofproblemsolving.com/community/c3567
by WakeUp

1 Prove that if m and s are integers with $m s=2000^{2001}$, then the equation $m x^{2}-s y^{2}=3$ has no integer solutions.

2 Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(f(n-1)=f(n+1)-f(n) \quad \text { for all } n \geq 2 \text { ? }
$$

3 Let $A B C$ be a scalene triangle and k be its circumcircle. Let t_{A}, t_{B}, t_{C} be the tangents to k at A, B, C, respectively. Prove that points $A B \cap t_{C}, C A \cap t_{B}$, and $B C \cap t_{A}$ exist, and that they are collinear.
$4 \quad$ Let Ω be a family of subsets of M such that:
(i) If $|A \cap B| \geq 2$ for $A, B \in \Omega$, then $A=B$; (ii) There exist different subsets $A, B, C \in \Omega$ with $|A \cap B \cap C|=1$; (iii) For every $A \in \Omega$ and $a \in M A$, there is a unique $B \in \Omega$ such that $a \in B$ and $A \cap B=\emptyset$.

Prove that there are numbers p and s such that:
(1) Each $a \in M$ is contained in exactly p sets in $\Omega ;(2)|A|=s$ for all $A \in \Omega$; (3) $s+1 \geq p$.

