AoPS Community

Macedonia National Olympiad 2007

www.artofproblemsolving.com/community/c3569
by N.T.TUAN, pco

1 Let a, b, c be positive real numbers. Prove that

$$
1+\frac{3}{a b+b c+c a} \geq \frac{6}{a+b+c} .
$$

2 In a trapezoid $A B C D$ with a base $A D$, point L is the orthogonal projection of C on $A B$, and K is the point on $B C$ such that $A K$ is perpendicular to $A D$. Let O be the circumcenter of triangle $A C D$. Suppose that the lines $A K, C L$ and $D O$ have a common point. Prove that $A B C D$ is a parallelogram.

3 Natural numbers a, b and c are pairwise distinct and satisfy

$$
a|b+c+b c, b| c+a+c a, c \mid a+b+a b .
$$

Prove that at least one of the numbers a, b, c is not prime.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f\left(x^{3}+y^{3}\right)=x^{2} f(x)+y f\left(y^{2}\right)
$$

for all $x, y \in \mathbb{R}$.
$5 \quad$ Let n be a natural number divisible by 4 . Determine the number of bijections f on the set $\{1,2, \ldots, n\}$ such that $f(j)+f^{-1}(j)=n+1$ for $j=1, \ldots, n$.

