AoPS Community

Macedonia National Olympiad 2008

www.artofproblemsolving.com/community/c3570
by April, test20

1 Find all injective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy

$$
f(f(n)) \leq \frac{n+f(n)}{2}
$$

for each $n \in \mathbb{N}$.
2 Positive numbers a, b, c are such that $(a+b)(b+c)(c+a)=8$. Prove the inequality

$$
\frac{a+b+c}{3} \geq \sqrt[27]{\frac{a^{3}+b^{3}+c^{3}}{3}}
$$

$3 \quad$ An acute triangle $A B C$ with $A B \neq A C$ is given. Let V and D be the feet of the altitude and angle bisector from A, and let E and F be the intersection points of the circumcircle of $\triangle A V D$ with sides $A C$ and $A B$, respectively. Prove that $A D, B E$ and $C F$ have a common point.

4 We call an integer $n>1$ good if, for any natural numbers $1 \leq b_{1}, b_{2}, \ldots, b_{n-1} \leq n-1$ and any $i \in\{0,1, \ldots, n-1\}$, there is a subset I of $\{1, \ldots, n-1\}$ such that $\sum_{k \in I} b_{k} \equiv i(\bmod n)$. (The sum over the empty set is zero.) Find all good numbers.

