AoPS Community

Macedonia National Olympiad 2011

www.artofproblemsolving.com/community/c3573
by StefanS

1 Let $a, b, c, d>0$ and $a+b+c+d=1$. Prove the inequality

$$
\frac{1}{4 a+3 b+c}+\frac{1}{3 a+b+4 d}+\frac{1}{a+4 c+3 d}+\frac{1}{4 b+3 c+d} \geq 2
$$

2 Acute-angled $\triangle A B C$ is given. A line l parallel to side $A B$ passing through vertex C is drawn. Let the angle bisectors of $\angle B A C$ and $\angle A B C$ intersect the sides $B C$ and $A C$ at points D and F, and line l at points E and G respectively. Prove that if $\overline{D E}=\overline{G F}$ then $\overline{A C}=\overline{B C}$.

3 Find all natural numbers n for which each natural number written with $n-1$ 'ones' and one 'seven' is prime.

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equation

$$
f(x+y f(x))=f(f(x))+x f(y) .
$$

5 A table of the type $\left(n_{1}, n_{2}, \ldots, n_{m}\right), n_{1} \geq n_{2} \geq \ldots \geq n_{m}$ is defined in the following way: n_{1} squares are ordered horizontally one next to another, then n_{2} squares are ordered horizontally beneath the already ordered n_{1} squares. The procedure continues until a net composed of n_{1} squares in the first row, n_{2} in the second, n_{i} in the i-th row is obtained, such that there are totally $n=n_{1}+n_{2}+\ldots+n_{m}$ squares in the net. The ordered rows form a straight line on the left, as shown in the example. The obtained table is filled with the numbers from 1 till n in a way that the numbers in each row and column become greater from left to right and from top to bottom, respectively. An example of a table of the type (5, 4, 2, 1) and one possible way of filling it is attached to the post. Find the number of ways the table of type $(4,3,2)$ can be filled.

