AoPS Community

Macedonia National Olympiad 2014

www.artofproblemsolving.com/community/c3576
by Stefan4024, parmenides51

1 In a plane, 2014 lines are distributed in 3 groups. in every group all the lines are parallel between themselves. What is the maximum number of triangles that can be formed, such that every side of such triangle lie on one of the lines?

2 Solve the following equation in \mathbb{Z} :

$$
3^{2 a+1} b^{2}+1=2^{c}
$$

3 Let k_{1}, k_{2} and k_{3} be three circles with centers O_{1}, O_{2} and O_{3} respectively, such that no center is inside of the other two circles. Circles k_{1} and k_{2} intersect at A and P, circles k_{1} and k_{3} intersect and C and P, circles k_{2} and k_{3} intersect at B and P. Let X be a point on k_{1} such that the line $X A$ intersects k_{2} at Y and the line $X C$ intersects k_{3} at Z, such that Y is nor inside k_{1} nor inside k_{3} and Z is nor inside k_{1} nor inside k_{2}.
a) Prove that $\triangle X Y Z$ is simular to $\triangle O_{1} O_{2} O_{3}$
b) Prove that the $P_{\triangle X Y Z} \leq 4 P_{\triangle O_{1} O_{2} O_{3}}$. Is it possible to reach equation?

Note: P denotes the area of a triangle.
4 Let a, b, c be real numbers such that $a+b+c=4$ and $a, b, c>1$. Prove that:

$$
\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1} \geq \frac{8}{a+b}+\frac{8}{b+c}+\frac{8}{c+a}
$$

5 From an equilateral triangle with side 2014 we cut off another equilateral triangle with side 214, such that both triangles have one common vertex and two of the side of the smaller triangles lie on two of the side of the bigger triangle. Is it possible to cover this figure with figures in the picture without overlapping (rotation is allowed) if all figures are made of equilateral triangles with side 1? Explain the answer!

