

AoPS Community

Northern Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c3577 by April

Day 1

1	Let ABC be acute triangle. The circle with diameter AB intersects CA , CB at M , N , respectively. Draw $CT \perp AB$ and intersects above circle at T , where C and T lie on the same side of AB . S is a point on AN such that $BT = BS$. Prove that $BS \perp SC$.
2	Let a, b, c be side lengths of a triangle and $a + b + c = 3$. Find the minimum of $a^2 + b^2 + c^2 + \frac{4abc}{3}$
3	Sequence $\{a_n\}$ is defined by $a_1 = 2007$, $a_{n+1} = \frac{a_n^2}{a_n+1}$ for $n \ge 1$. Prove that $[a_n] = 2007 - n$ for $0 \le n \le 1004$, where $[x]$ denotes the largest integer no larger than x .

4 For every point on the plane, one of *n* colors are colored to it such that:

(1) Every color is used infinitely many times.

 $\left(2\right)$ There exists one line such that all points on this lines are colored exactly by one of two colors.

Find the least value of n such that there exist four concyclic points with pairwise distinct colors.

Day 2

1 Let α , β be acute angles. Find the maximum value of

$$\frac{\left(1 - \sqrt{\tan \alpha \tan \beta}\right)^2}{\cot \alpha + \cot \beta}$$

- **2** Let f be a function given by $f(x) = \lg(x+1) \frac{1}{2} \cdot \log_3 x$.
 - a) Solve the equation f(x) = 0.
 - b) Find the number of the subsets of the set

$$\{n|f(n^2 - 214n - 1998) \ge 0, \ n \in \mathbb{Z}\}.$$

3 Let n be a positive integer and [n] = a. Find the largest integer n such that the following two conditions are satisfied:

n is not a perfect square;
a³ divides n².

4 The inradius of triangle ABC is 1 and the side lengths of ABC are all integers. Prove that triangle ABC is right-angled.

Act of Problem Solving is an ACS WASC Accredited School.