AoPS Community

Northern Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c3578
by parmenides51, sqing

1 Find the largest positive integer $n(n \geq 3)$, so that there is a convex n-gon, the tangent of each interior angle is an integer.

2 If $a_{1}, a_{2}, \cdots, a_{2013} \in[-2,2]$ and $a_{1}+a_{2}+\cdots+a_{2013}=0$, find the maximum of $a_{1}^{3}+a_{2}^{3}+\cdots+a_{2013}^{3}$.

3 As shown in figure, A, B are two fixed points of circle $\odot O, C$ is the midpoint of the major arc $A B, D$ is any point of the minor arc $A B$. Tangent at D intersects tangents at A, B at points E, F respectively. Segments $C E$ and $C F$ intersect chord $A B$ at points G and H respectively. Prove that the length of line segment $G H$ has a fixed value.
https://cdn.artofproblemsolving.com/attachments/9/2/85227f169193f61e313293e9128f6ece2ff1f png

4 For positive integers n, a, b, if $n=a^{2}+b^{2}$, and a and b are coprime, then the number pair (a, b) is called a square split of n (the order of a, b does not count). Prove that for any positive k, there are only two square splits of the integer 13^{k}.
$5 \quad$ Find all non-integers x such that $x+\frac{13}{x}=[x]+\frac{13}{[x]}$. where $[x]$ mean the greatest integer n, where $n \leq x$.

6 As shown in figure, it is known that M is the midpoint of side $B C$ of $\triangle A B C . \odot O$ passes through points A, C and is tangent to $A M$. The extension of the segment $B A$ intersects $\odot O$ at point D. The lines $C D$ and $M A$ intersect at the point P. Prove that $P O \perp B C$. https://cdn.artofproblemsolving.com/attachments/8/a/da3570ec7eb0833c7a396e22ffac2bd890218 png

7 Suppose that $\left\{a_{n}\right\}$ is a sequence such that $a_{n+1}=\left(1+\frac{k}{n}\right) a_{n}+1$ with $a_{1}=1$. Find all positive integers k such that any a_{n} be integer.
$8 \quad 3 n(n \geq 2, n \in N)$ people attend a gathering, in which any two acquaintances have exactly n common acquaintances, and any two unknown people have exactly $2 n$ common acquaintances. If three people know each other, it is called a Taoyuan Group.
(1) Find the number of all Taoyuan groups;
(2) Prove that these $3 n$ people can be divided into three groups, with n people in each group, and the three people obtained by randomly selecting one person from each group constitute a Taoyuan group.

Note: Acquaintance means that two people know each other, otherwise they are not acquaintances. Two people who know each other are called acquaintances.

