

AoPS Community

Northern Mathematical	Olympiad 2013
------------------------------	---------------

www.artofproblemsolving.com/community/c3578 by parmenides51, sqing

1	Find the largest positive integer $n \ (n \ge 3)$, so that there is a convex n -gon, the tangent of each interior angle is an integer.	
2	If $a_1, a_2, \cdots, a_{2013} \in [-2, 2]$ and $a_1 + a_2 + \cdots + a_{2013} = 0$, find the maximum of $a_1^3 + a_2^3 + \cdots + a_{2013}^3$.	
3	As shown in figure , A, B are two fixed points of circle $\odot O, C$ is the midpoint of the major arc AB, D is any point of the minor arc AB . Tangent at D intersects tangents at A, B at points E, F respectively. Segments CE and CF intersect chord AB at points G and H respectively. Prove that the length of line segment GH has a fixed value. https://cdn.artofproblemsolving.com/attachments/9/2/85227f169193f61e313293e9128f6ece2ff1 png	
4	For positive integers n, a, b , if $n = a^2 + b^2$, and a and b are coprime, then the number pair (a, b) is called a <i>square split</i> of n (the order of a, b does not count). Prove that for any positive k , there are only two square splits of the integer 13^k .	
5	Find all non-integers x such that $x + \frac{13}{x} = [x] + \frac{13}{[x]}$.where $[x]$ mean the greatest integer n , where $n \le x$.	
6	As shown in figure, it is known that M is the midpoint of side BC of $\triangle ABC$. $\bigcirc O$ passes through points A, C and is tangent to AM . The extension of the segment BA intersects $\bigcirc O$ at point D . The lines CD and MA intersect at the point P . Prove that $PO \perp BC$. https://cdn.artofproblemsolving.com/attachments/8/a/da3570ec7eb0833c7a396e22ffac2bd89021 png	
7	Suppose that $\{a_n\}$ is a sequence such that $a_{n+1} = (1 + \frac{k}{n})a_n + 1$ with $a_1 = 1$. Find all positive integers k such that any a_n be integer.	
8	$3n$ ($n \geq 2, n \in N$) people attend a gathering, in which any two acquaintances have exactly n	

 $3n (n \ge 2, n \in N)$ people attend a gathering, in which any two acquaintances have exactly n common acquaintances, and any two unknown people have exactly 2n common acquaintances. If three people know each other, it is called a *Taoyuan Group*.

(1) Find the number of all Taoyuan groups;

(2) Prove that these 3n people can be divided into three groups, with n people in each group, and the three people obtained by randomly selecting one person from each group constitute a Taoyuan group.

AoPS Community

2013 China Northern MO

Note: Acquaintance means that two people know each other, otherwise they are not acquaintances. Two people who know each other are called acquaintances.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.