AoPS Community

Middle European Mathematical Olympiad 2007
www.artofproblemsolving.com/community/c3580
by Yimin Ge

Day 1

1 Let a, b, c, d be positive real numbers with $a+b+c+d=4$.
Prove that

$$
a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq 4
$$

2 A set of balls contains n balls which are labeled with numbers $1,2,3, \ldots, n$. We are given $k>1$ such sets. We want to colour the balls with two colours, black and white in such a way, that
(a) the balls labeled with the same number are of the same colour,
(b) any subset of $k+1$ balls with (not necessarily different) labels $a_{1}, a_{2}, \ldots, a_{k+1}$ satisfying the condition $a_{1}+a_{2}+\ldots+a_{k}=a_{k+1}$, contains at least one ball of each colour.

Find, depending on k the greatest possible number n which admits such a colouring.
3 Let k be a circle and $k_{1}, k_{2}, k_{3}, k_{4}$ four smaller circles with their centres $O_{1}, O_{2}, O_{3}, O_{4}$ respectively, on k. For $i=1,2,3,4$ and $k_{5}=k_{1}$ the circles k_{i} and k_{i+1} meet at A_{i} and B_{i} such that A_{i} lies on k. The points $O_{1}, A_{1}, O_{2}, A_{2}, O_{3}, A_{3}, O_{4}, A_{4}$ lie in that order on k and are pairwise different.

Prove that $B_{1} B_{2} B_{3} B_{4}$ is a rectangle.
4 Determine all pairs (x, y) of positive integers satisfying the equation

$$
x!+y!=x^{y} .
$$

Day 2

1 Let a, b, c, d be real numbers which satisfy $\frac{1}{2} \leq a, b, c, d \leq 2$ and $a b c d=1$. Find the maximum value of

$$
\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{d}\right)\left(d+\frac{1}{a}\right) .
$$

2 For a set P of five points in the plane, no three of them being collinear, let $s(P)$ be the numbers of acute triangles formed by vertices in P.
Find the maximum value of $s(P)$ over all such sets P.
3 A tetrahedron is called a MEMO-tetrahedron if all six sidelengths are different positive integers where one of them is 2 and one of them is 3 . Let $l(T)$ be the sum of the sidelengths of the tetrahedron T.
(a) Find all positive integers n so that there exists a MEMO-Tetrahedron T with $l(T)=n$.
(b) How many pairwise non-congruent MEMO-tetrahedrons T satisfying $l(T)=2007$ exist? Two tetrahedrons are said to be non-congruent if one cannot be obtained from the other by a composition of reflections in planes, translations and rotations. (It is not neccessary to prove that the tetrahedrons are not degenerate, i.e. that they have a positive volume).

4 Find all positive integers k with the following property: There exists an integer a so that ($a+$ $k)^{3}-a^{3}$ is a multiple of 2007.

