

AoPS Community

Middle European Mathematical Olympiad 2010 www.artofproblemsolving.com/community/c3583 by Martin N.

1 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, we have

f(x+y) + f(x)f(y) = f(xy) + (y+1)f(x) + (x+1)f(y).

2 All positive divisors of a positive integer *N* are written on a blackboard. Two players *A* and *B* play the following game taking alternate moves. In the firt move, the player *A* erases *N*. If the last erased number is *d*, then the next player erases either a divisor of *d* or a multiple of *d*. The player who cannot make a move loses. Determine all numbers *N* for which *A* can win independently of the moves of *B*.

(4th Middle European Mathematical Olympiad, Individual Competition, Problem 2)

3 We are given a cyclic quadrilateral ABCD with a point E on the diagonal AC such that AD = AE and CB = CE. Let M be the center of the circumcircle k of the triangle BDE. The circle k intersects the line AC in the points E and F. Prove that the lines FM, AD and BC meet at one point.

(4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)

Find all positive integers n which satisfy the following tow conditions:
(a) n has at least four different positive divisors;
(b) for any divisors a and b of n satisfying 1 < a < b < n, the number b - a divides n.

(4th Middle European Mathematical Olympiad, Individual Competition, Problem 4)

5 Three strictly increasing sequences

 $a_1, a_2, a_3, \ldots, b_1, b_2, b_3, \ldots, c_1, c_2, c_3, \ldots$

of positive integers are given. Every positive integer belongs to exactly one of the three sequences. For every positive integer n, the following conditions hold:

(a) $c_{a_n} = b_n + 1$; (b) $a_{n+1} > b_n$; (c) the number $c_{n+1}c_n - (n+1)c_{n+1} - nc_n$ is even. Find a_{2010}, b_{2010} and c_{2010} .

(4th Middle European Mathematical Olympiad, Team Competition, Problem 1)

AoPS Community

6 For each integer $n \ge 2$, determine the largest real constant C_n such that for all positive real numbers a_1, \ldots, a_n we have

$$\frac{a_1^2 + \ldots + a_n^2}{n} \ge \left(\frac{a_1 + \ldots + a_n}{n}\right)^2 + C_n \cdot (a_1 - a_n)^2.$$

(4th Middle European Mathematical Olympiad, Team Competition, Problem 2)

7 In each vertex of a regular *n*-gon, there is a fortress. At the same moment, each fortress shoots one of the two nearest fortresses and hits it. The *result of the shooting* is the set of the hit fortresses; we do not distinguish whether a fortress was hit once or twice. Let P(n) be the number of possible results of the shooting. Prove that for every positive integer $k \ge 3$, P(k) and P(k + 1) are relatively prime.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 3)

8 Let *n* be a positive integer. A square ABCD is partitioned into n^2 unit squares. Each of them is divided into two triangles by the diagonal parallel to BD. Some of the vertices of the unit squares are colored red in such a way that each of these $2n^2$ triangles contains at least one red vertex. Find the least number of red vertices.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 4)

9 The incircle of the triangle ABC touches the sides BC, CA, and AB in the points D, E and F, respectively. Let K be the point symmetric to D with respect to the incenter. The lines DE and FK intersect at S. Prove that AS is parallel to BC.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 5)

10 Let A, B, C, D, E be points such that ABCD is a cyclic quadrilateral and ABDE is a parallelogram. The diagonals AC and BD intersect at S and the rays AB and DC intersect at F. Prove that $\triangleleft AFS = \triangleleft ECD$.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 6)

11 For a nonnegative integer n, define a_n to be the positive integer with decimal representation

$$1\underbrace{0\ldots0}_{n}2\underbrace{0\ldots0}_{n}2\underbrace{0\ldots0}_{n}1.$$

Prove that $\frac{a_n}{3}$ is always the sum of two positive perfect cubes but never the sum of two perfect squares.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 7)

AoPS Community

2010 Middle European Mathematical Olympiad

- **12** We are given a positive integer *n* which is not a power of two. Show that ther exists a positive integer *m* with the following two properties:
 - (a) m is the product of two consecutive positive integers;
 - (b) the decimal representation of m consists of two identical blocks with n digits.

(4th Middle European Mathematical Olympiad, Team Competition, Problem 8)

Act of Problem Solving is an ACS WASC Accredited School.