Art of Problem Solving

AoPS Community

Middle European Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c3583
by Martin N .

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, we have

$$
f(x+y)+f(x) f(y)=f(x y)+(y+1) f(x)+(x+1) f(y) .
$$

2 All positive divisors of a positive integer N are written on a blackboard. Two players A and B play the following game taking alternate moves. In the firt move, the player A erases N. If the last erased number is d, then the next player erases either a divisor of d or a multiple of d. The player who cannot make a move loses. Determine all numbers N for which A can win independently of the moves of B.
(4th Middle European Mathematical Olympiad, Individual Competition, Problem 2)
3 We are given a cyclic quadrilateral $A B C D$ with a point E on the diagonal $A C$ such that $A D=$ $A E$ and $C B=C E$. Let M be the center of the circumcircle k of the triangle $B D E$. The circle k intersects the line $A C$ in the points E and F. Prove that the lines $F M, A D$ and $B C$ meet at one point.
(4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)
4 Find all positive integers n which satisfy the following tow conditions:
(a) n has at least four different positive divisors;
(b) for any divisors a and b of n satisfying $1<a<b<n$, the number $b-a$ divides n.
(4th Middle European Mathematical Olympiad, Individual Competition, Problem 4)
5 Three strictly increasing sequences

$$
a_{1}, a_{2}, a_{3}, \ldots, \quad b_{1}, b_{2}, b_{3}, \ldots, \quad c_{1}, c_{2}, c_{3}, \ldots
$$

of positive integers are given. Every positive integer belongs to exactly one of the three sequences. For every positive integer n, the following conditions hold:
(a) $c_{a_{n}}=b_{n}+1$;
(b) $a_{n+1}>b_{n}$;
(c) the number $c_{n+1} c_{n}-(n+1) c_{n+1}-n c_{n}$ is even.

Find a_{2010}, b_{2010} and c_{2010}.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 1)

AoPS Community

2010 Middle European Mathematical Olympiad

6 For each integer $n \geqslant 2$, determine the largest real constant C_{n} such that for all positive real numbers a_{1}, \ldots, a_{n} we have

$$
\frac{a_{1}^{2}+\ldots+a_{n}^{2}}{n} \geqslant\left(\frac{a_{1}+\ldots+a_{n}}{n}\right)^{2}+C_{n} \cdot\left(a_{1}-a_{n}\right)^{2} .
$$

(4th Middle European Mathematical Olympiad, Team Competition, Problem 2)
7 In each vertex of a regular n-gon, there is a fortress. At the same moment, each fortress shoots one of the two nearest fortresses and hits it. The result of the shooting is the set of the hit fortresses; we do not distinguish whether a fortress was hit once or twice. Let $P(n)$ be the number of possible results of the shooting. Prove that for every positive integer $k \geqslant 3, P(k)$ and $P(k+1)$ are relatively prime.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 3)
8 Let n be a positive integer. A square $A B C D$ is partitioned into n^{2} unit squares. Each of them is divided into two triangles by the diagonal parallel to $B D$. Some of the vertices of the unit squares are colored red in such a way that each of these $2 n^{2}$ triangles contains at least one red vertex. Find the least number of red vertices.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 4)
9 The incircle of the triangle $A B C$ touches the sides $B C, C A$, and $A B$ in the points D, E and F, respectively. Let K be the point symmetric to D with respect to the incenter. The lines $D E$ and $F K$ intersect at S. Prove that $A S$ is parallel to $B C$.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 5)
10 Let A, B, C, D, E be points such that $A B C D$ is a cyclic quadrilateral and $A B D E$ is a parallelogram. The diagonals $A C$ and $B D$ intersect at S and the rays $A B$ and $D C$ intersect at F. Prove that $\varangle A F S=\varangle E C D$.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 6)
11 For a nonnegative integer n, define a_{n} to be the positive integer with decimal representation

Prove that $\frac{a_{n}}{3}$ is always the sum of two positive perfect cubes but never the sum of two perfect squares.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 7)

12 We are given a positive integer n which is not a power of two. Show that ther exists a positive integer m with the following two properties:
(a) m is the product of two consecutive positive integers;
(b) the decimal representation of m consists of two identical blocks with n digits.
(4th Middle European Mathematical Olympiad, Team Competition, Problem 8)

