AoPS Community

2011 Middle European Mathematical Olympiad

Middle European Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c3584
by Amir Hossein

- Individual Competition

1 Initially, only the integer 44 is written on a board. An integer a on the board can be re- placed with four pairwise different integers $a_{1}, a_{2}, a_{3}, a_{4}$ such that the arithmetic mean $\frac{1}{4}\left(a_{1}+a_{2}+a_{3}+\right.$ a_{4}) of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with $n=4^{30}$ integers $b_{1}, b 2, \ldots, b_{n}$ on the board. Prove that

$$
\frac{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+\cdots+b_{n}^{2}}{n} \geq 2011 .
$$

2 Let $n \geq 3$ be an integer. John and Mary play the following game: First John labels the sides of a regular n-gon with the numbers $1,2, \ldots, n$ in whatever order he wants, using each number exactly once. Then Mary divides this n-gon into triangles by drawing $n-3$ diagonals which do not intersect each other inside the n-gon. All these diagonals are labeled with number 1 . Into each of the triangles the product of the numbers on its sides is written. Let S be the sum of those $n-2$ products.

Determine the value of S if Mary wants the number S to be as small as possible and John wants S to be as large as possible and if they both make the best possible choices.

3 In a plane the circles \mathcal{K}_{1} and \mathcal{K}_{2} with centers I_{1} and I_{2}, respectively, intersect in two points A and B. Assume that $\angle I_{1} A I_{2}$ is obtuse. The tangent to \mathcal{K}_{1} in A intersects \mathcal{K}_{2} again in C and the tangent to \mathcal{K}_{2} in A intersects \mathcal{K}_{1} again in D. Let \mathcal{K}_{3} be the circumcircle of the triangle $B C D$. Let E be the midpoint of that arc $C D$ of \mathcal{K}_{3} that contains B. The lines $A C$ and $A D$ intersect \mathcal{K}_{3} again in K and L, respectively. Prove that the line $A E$ is perpendicular to $K L$.

4 Let k and m, with $k>m$, be positive integers such that the number $k m\left(k^{2}-m^{2}\right)$ is divisible by $k^{3}-m^{3}$. Prove that $(k-m)^{3}>3 k m$.

- Team Competition

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
y^{2} f(x)+x^{2} f(y)+x y=x y f(x+y)+x^{2}+y^{2}
$$

holds for all $x, y \in \mathbb{R}$, where \mathbb{R} is the set of real numbers.

AoPS Community

2 Let a, b, c be positive real numbers such that

$$
\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2 .
$$

Prove that

$$
\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2} \geq \frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}} .
$$

$3 \quad$ For an integer $n \geq 3$, let \mathcal{M} be the set $\{(x, y) \mid x, y \in \mathbb{Z}, 1 \leq x \leq n, 1 \leq y \leq n\}$ of points in the plane.
What is the maximum possible number of points in a subset $S \subseteq \mathcal{M}$ which does not contain three distinct points being the vertices of a right triangle?

4 Let $n \geq 3$ be an integer. At a MEMO-like competition, there are $3 n$ participants, there are n languages spoken, and each participant speaks exactly three different languages. Prove that at least $\left\lceil\frac{2 n}{9}\right\rceil$ of the spoken languages can be chosen in such a way that no participant speaks more than two of the chosen languages.
Note. $\lceil x\rceil$ is the smallest integer which is greater than or equal to x.
5 Let $A B C D E$ be a convex pentagon with all five sides equal in length. The diagonals $A D$ and $E C$ meet in S with $\angle A S E=60^{\circ}$. Prove that $A B C D E$ has a pair of parallel sides.

6 Let $A B C$ be an acute triangle. Denote by B_{0} and C_{0} the feet of the altitudes from vertices B and C, respectively. Let X be a point inside the triangle $A B C$ such that the line $B X$ is tangent to the circumcircle of the triangle $A X C_{0}$ and the line $C X$ is tangent to the circumcircle of the triangle $A X B_{0}$. Show that the line $A X$ is perpendicular to $B C$.

7 Let A and B be disjoint nonempty sets with $A \cup B=\{1,2,3, \ldots, 10\}$. Show that there exist elements $a \in A$ and $b \in B$ such that the number $a^{3}+a b^{2}+b^{3}$ is divisible by 11 .

8 We call a positive integer n amazing if there exist positive integers a, b, c such that the equality

$$
n=(b, c)(a, b c)+(c, a)(b, c a)+(a, b)(c, a b)
$$

holds. Prove that there exist 2011 consecutive positive integers which are amazing.
Note. By (m, n) we denote the greatest common divisor of positive integers m and n.

