

AoPS Community

2011 Middle European Mathematical Olympiad

Middle European Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c3584 by Amir Hossein

Individual Competition

1 Initially, only the integer 44 is written on a board. An integer a on the board can be re-placed with four pairwise different integers a_1, a_2, a_3, a_4 such that the arithmetic mean $\frac{1}{4}(a_1 + a_2 + a_3 + a_4)$ of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with $n = 4^{30}$ integers b_1, b_2, \ldots, b_n on the board. Prove that

$$\frac{b_1^2 + b_2^2 + b_3^2 + \dots + b_n^2}{n} \ge 2011.$$

2 Let $n \ge 3$ be an integer. John and Mary play the following game: First John labels the sides of a regular *n*-gon with the numbers 1, 2, ..., n in whatever order he wants, using each number exactly once. Then Mary divides this *n*-gon into triangles by drawing n - 3 diagonals which do not intersect each other inside the *n*-gon. All these diagonals are labeled with number 1. Into each of the triangles the product of the numbers on its sides is written. Let S be the sum of those n - 2 products.

Determine the value of S if Mary wants the number S to be as small as possible and John wants S to be as large as possible and if they both make the best possible choices.

- **3** In a plane the circles \mathcal{K}_1 and \mathcal{K}_2 with centers I_1 and I_2 , respectively, intersect in two points A and B. Assume that $\angle I_1AI_2$ is obtuse. The tangent to \mathcal{K}_1 in A intersects \mathcal{K}_2 again in C and the tangent to \mathcal{K}_2 in A intersects \mathcal{K}_1 again in D. Let \mathcal{K}_3 be the circumcircle of the triangle BCD. Let E be the midpoint of that arc CD of \mathcal{K}_3 that contains B. The lines AC and AD intersect \mathcal{K}_3 again in K and L, respectively. Prove that the line AE is perpendicular to KL.
- 4 Let k and m, with k > m, be positive integers such that the number $km(k^2 m^2)$ is divisible by $k^3 m^3$. Prove that $(k m)^3 > 3km$.

Team Competition

1 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$y^{2}f(x) + x^{2}f(y) + xy = xyf(x+y) + x^{2} + y^{2}$$

holds for all $x, y \in \mathbb{R}$, where \mathbb{R} is the set of real numbers.

AoPS Community

2011 Middle European Mathematical Olympiad

2 Let *a*, *b*, *c* be positive real numbers such that

$$\frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} = 2.$$

Prove that

$$\frac{\sqrt{a} + \sqrt{b} + \sqrt{c}}{2} \ge \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}.$$

3 For an integer $n \ge 3$, let \mathcal{M} be the set $\{(x, y) | x, y \in \mathbb{Z}, 1 \le x \le n, 1 \le y \le n\}$ of points in the plane.

What is the maximum possible number of points in a subset $S \subseteq M$ which does not contain three distinct points being the vertices of a right triangle?

4 Let $n \ge 3$ be an integer. At a MEMO-like competition, there are 3n participants, there are n languages spoken, and each participant speaks exactly three different languages. Prove that at least $\lceil \frac{2n}{9} \rceil$ of the spoken languages can be chosen in such a way that no participant speaks more than two of the chosen languages.

Note. $\lceil x \rceil$ is the smallest integer which is greater than or equal to *x*.

- 5 Let ABCDE be a convex pentagon with all five sides equal in length. The diagonals AD and EC meet in S with $\angle ASE = 60^{\circ}$. Prove that ABCDE has a pair of parallel sides.
- **6** Let ABC be an acute triangle. Denote by B_0 and C_0 the feet of the altitudes from vertices B and C, respectively. Let X be a point inside the triangle ABC such that the line BX is tangent to the circumcircle of the triangle AXC_0 and the line CX is tangent to the circumcircle of the triangle AXC_0 and the line CX is tangent to the circumcircle of the triangle AXB_0 . Show that the line AX is perpendicular to BC.
- 7 Let A and B be disjoint nonempty sets with $A \cup B = \{1, 2, 3, ..., 10\}$. Show that there exist elements $a \in A$ and $b \in B$ such that the number $a^3 + ab^2 + b^3$ is divisible by 11.
- 8 We call a positive integer *n* amazing if there exist positive integers *a*, *b*, *c* such that the equality

$$n = (b, c)(a, bc) + (c, a)(b, ca) + (a, b)(c, ab)$$

holds. Prove that there exist 2011 consecutive positive integers which are *amazing*.

Note. By (m, n) we denote the greatest common divisor of positive integers m and n.

AoPS Online 🙋 AoPS Academy 🙋 AoPS

Art of Problem Solving is an ACS WASC Accredited School.