AoPS Community

Middle European Mathematical Olympiad 2012
www.artofproblemsolving.com/community/c3585
by syk0526

- Individual Competition
- \quad September 8th
$1 \quad$ Let \mathbb{R}^{+}denote the set of all positive real numbers. Find all functions $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x+f(y))=y f(x y+1)
$$

holds for all $x, y \in \mathbb{R}^{+}$.
2 Let N be a positive integer. A set $S \subset\{1,2, \cdots, N\}$ is called allowed if it does not contain three distinct elements a, b, c such that a divides b and b divides c. Determine the largest possible number of elements in an allowed set S.

3 In a given trapezium $A B C D$ with $A B$ parallel to $C D$ and $A B>C D$, the line $B D$ bisects the angle $\angle A D C$. The line through C parallel to $A D$ meets the segments $B D$ and $A B$ in E and F, respectively. Let O be the circumcenter of the triangle $B E F$. Suppose that $\angle A C O=60^{\circ}$. Prove the equality

$$
C F=A F+F O .
$$

4 The sequence $\left\{a_{n}\right\}_{n \geq 0}$ is defined by $a_{0}=2, a_{1}=4$ and

$$
a_{n+1}=\frac{a_{n} a_{n-1}}{2}+a_{n}+a_{n-1}
$$

for all positive integers n. Determine all prime numbers p for which there exists a positive integer m such that p divides the number $a_{m}-1$.

- Team Competition

- October 9th

1 Find all triplets (x, y, z) of real numbers such that

$$
\begin{aligned}
& 2 x^{3}+1=3 z x \\
& 2 y^{3}+1=3 x y \\
& 2 z^{3}+1=3 y z
\end{aligned}
$$

AoPS Community

2012 Middle European Mathematical Olympiad

2 Let a, b and c be positive real numbers with $a b c=1$. Prove that

$$
\sqrt{9+16 a^{2}}+\sqrt{9+16 b^{2}}+\sqrt{9+16 c^{2}} \geq 3+4(a+b+c)
$$

3 Let n be a positive integer. Consider words of length n composed of letters from the set $\{M, E, O\}$. Let a be the number of such words containing an even number (possibly 0) of blocks $M E$ and an even number (possibly 0) blocks of $M O$. Similarly let b the number of such words containing an odd number of blocks $M E$ and an odd number of blocks $M O$. Prove that $a>b$.

4 Let $p>2$ be a prime number. For any permutation $\pi=(\pi(1), \pi(2), \cdots, \pi(p))$ of the set $S=$ $\{1,2, \cdots, p\}$, let $f(\pi)$ denote the number of multiples of p among the following p numbers:

$$
\pi(1), \pi(1)+\pi(2), \cdots, \pi(1)+\pi(2)+\cdots+\pi(p)
$$

Determine the average value of $f(\pi)$ taken over all permutations π of S.
5 Let K be the midpoint of the side $A B$ of a given triangle $A B C$. Let L and M be points on the sides $A C$ and $B C$, respectively, such that $\angle C L K=\angle K M C$. Prove that the perpendiculars to the sides $A B, A C$, and $B C$ passing through K, L, and M, respectively, are concurrent.

6 Let $A B C D$ be a convex quadrilateral with no pair of parallel sides, such that $\angle A B C=\angle C D A$. Assume that the intersections of the pairs of neighbouring angle bisectors of $A B C D$ form a convex quadrilateral $E F G H$. Let K be the intersection of the diagonals of $E F G H$. Prove that the lines $A B$ and $C D$ intersect on the circumcircle of the triangle $B K D$.

7 Find all triplets (x, y, z) of positive integers such that

$$
\begin{gathered}
x^{y}+y^{x}=z^{y} \\
x^{y}+2012=y^{z+1}
\end{gathered}
$$

8 For any positive integer n let $d(n)$ denote the number of positive divisors of n. Do there exist positive integers a and b, such that $d(a)=d(b)$ and $d\left(a^{2}\right)=d\left(b^{2}\right)$, but $d\left(a^{3}\right) \neq d\left(b^{3}\right)$?

