AoPS Community

Middle European Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c3587
by danepale

- Individual Competition

1 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x f(y)+f(x f(y))-x f(f(y))-f(x y)=2 x+f(y)-f(x+y)
$$

holds for all $x, y \in \mathbb{R}$.
2 We consider dissections of regular n-gons into $n-2$ triangles by $n-3$ diagonals which do not intersect inside the n-gon. A bicoloured triangulation is such a dissection of an n-gon in which each triangle is coloured black or white and any two triangles which share an edge have different colours. We call a positive integer $n \geq 4$ triangulable if every regular n-gon has a bicoloured triangulation such that for each vertex A of the n-gon the number of black triangles of which A is a vertex is greater than the number of white triangles of which A is a vertex.

Find all triangulable numbers.
3 Let $A B C$ be a triangle with $A B<A C$ and incentre I. Let E be the point on the side $A C$ such that $A E=A B$. Let G be the point on the line $E I$ such that $\angle I B G=\angle C B A$ and such that E and G lie on opposite sides of I.

Prove that the line $A I$, the line perpendicular to $A E$ at E, and the bisector of the angle $\angle B G I$ are concurrent.

4 For integers $n \geq k \geq 0$ we define the bibinomial coefficient $\left.\binom{n}{k}\right)$ by

$$
\left(\binom{n}{k}\right)=\frac{n!!}{k!!(n-k)!!} .
$$

Determine all pairs (n, k) of integers with $n \geq k \geq 0$ such that the corresponding bibinomial coefficient is an integer.
[i]Remark: The double factorial n !! is defined to be the product of all even positive integers up to n if n is even and the product of all odd positive integers up to n if n is odd. So e.g. $0!!=1$, $4!!=2 \cdot 4=8$, and $7!!=1 \cdot 3 \cdot 5 \cdot 7=105$.[/i]

- Team Competition

AoPS Community

1 Determine the lowest possible value of the expression

$$
\frac{1}{a+x}+\frac{1}{a+y}+\frac{1}{b+x}+\frac{1}{b+y}
$$

where a, b, x, and y are positive real numbers satisfying the inequalities

$$
\begin{aligned}
& \frac{1}{a+x} \geq \frac{1}{2} \\
& \frac{1}{a+y} \geq \frac{1}{2} \\
& \frac{1}{b+x} \geq \frac{1}{2} \\
& \frac{1}{b+y} \geq 1
\end{aligned}
$$

2 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x f(x y)+x y f(x) \geq f\left(x^{2}\right) f(y)+x^{2} y
$$

holds for all $x, y \in \mathbb{R}$.
$3 \quad$ Let K and L be positive integers. On a board consisting of $2 K \times 2 L$ unit squares an ant starts in the lower left corner square and walks to the upper right corner square. In each step it goes horizontally or vertically to a neighbouring square. It never visits a square twice. At the end some squares may remain unvisited.
In some cases the collection of all unvisited squares forms a single rectangle. In such cases, we call this rectangle MEMOrable.
Determine the number of different MEMOrable rectangles.
Remark: Rectangles are different unless they consist of exactly the same squares.
4 In Happy City there are 2014 citizens called $A_{1}, A_{2}, \ldots, A_{2014}$. Each of them is either happy or unhappy at any moment in time. The mood of any citizen A changes (from being unhappy to being happy or vice versa) if and only if some other happy citizen smiles at A. On Monday morning there were N happy citizens in the city.
The following happened on Monday during the day: the citizen A_{1} smiled at citizen A_{2}, then A_{2} smiled at A_{3}, etc., and, finally, A_{2013} smiled at A_{2014}. Nobody smiled at anyone else apart from this. Exactly the same repeated on Tuesday, Wednesday and Thursday. There were exactly 2000 happy citizens on Thursday evening.
Determine the largest possible value of N.

5 Let $A B C$ be a triangle with $A B<A C$. Its incircle with centre I touches the sides $B C, C A$, and $A B$ in the points D, E, and F respectively. The angle bisector $A I$ intersects the lines $D E$ and $D F$ in the points X and Y respectively. Let Z be the foot of the altitude through A with respect to $B C$.

Prove that D is the incentre of the triangle $X Y Z$.
6 Let the incircle k of the triangle $A B C$ touch its side $B C$ at D. Let the line $A D$ intersect k at $L \neq D$ and denote the excentre of $A B C$ opposite to A by K. Let M and N be the midpoints of $B C$ and $K M$ respectively.
Prove that the points B, C, N, and L are concyclic.
7 A finite set of positive integers A is called meanly if for each of its nonempy subsets the arithmetic mean of its elements is also a positive integer. In other words, A is meanly if $\frac{1}{k}\left(a_{1}+\cdots+\right.$ a_{k}) is an integer whenever $k \geq 1$ and $a_{1}, \ldots, a_{k} \in A$ are distinct.

Given a positive integer n, determine the least possible sum of the elements of a meanly n element set.

8 Determine all quadruples (x, y, z, t) of positive integers such that

$$
20^{x}+14^{2 y}=(x+2 y+z)^{z t} .
$$

