

AoPS Community

2008 Romanian Masters In Mathematics

Romanian Masters In Mathematics 2008

www.artofproblemsolving.com/community/c3607 by freemind, Fedor Petrov

– Febr	uary	9th
--------	------	-----

- 1 Let *ABC* be an equilateral triangle and *P* in its interior. The distances from *P* to the triangle's sides are denoted by a^2, b^2, c^2 respectively, where a, b, c > 0. Find the locus of the points *P* for which a, b, c can be the sides of a non-degenerate triangle.
- **2** Prove that every bijective function $f : \mathbb{Z} \to \mathbb{Z}$ can be written in the way f = u + v where $u, v : \mathbb{Z} \to \mathbb{Z}$ are bijective functions.
- **3** Let a > 1 be a positive integer. Prove that every non-zero positive integer N has a multiple in the sequence $(a_n)_{n \ge 1}$, $a_n = \lfloor \frac{a^n}{n} \rfloor$.
- **4** Consider a square of sidelength n and $(n + 1)^2$ interior points. Prove that we can choose 3 of these points so that they determine a triangle (eventually degenerated) of area at most $\frac{1}{2}$.

AoPS Online AoPS Academy AoPS Caster