AoPS Community

Romanian Masters In Mathematics 2009

www.artofproblemsolving.com/community/c3608
by orl

1 For $a_{i} \in \mathbb{Z}^{+}, i=1, \ldots, k$, and $n=\sum_{i=1}^{k} a_{i}$, let $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)$ denote the greatest common divisor of a_{1}, \ldots, a_{k}.
Prove that $\frac{d}{n} \cdot \frac{n!}{\prod_{i=1}^{k}\left(a_{i}!\right)}$ is an integer.
Dan Schwarz, Romania
2 A set S of points in space satisfies the property that all pairwise distances between points in S are distinct. Given that all points in S have integer coordinates (x, y, z) where $1 \leq x, y, z \leq n$, show that the number of points in S is less than $\min \left((n+2) \sqrt{\frac{n}{3}}, n \sqrt{6}\right)$.
Dan Schwarz, Romania
3 Given four points $A_{1}, A_{2}, A_{3}, A_{4}$ in the plane, no three collinear, such that

$$
A_{1} A_{2} \cdot A_{3} A_{4}=A_{1} A_{3} \cdot A_{2} A_{4}=A_{1} A_{4} \cdot A_{2} A_{3},
$$

denote by O_{i} the circumcenter of $\triangle A_{j} A_{k} A_{l}$ with $\{i, j, k, l\}=\{1,2,3,4\}$. Assuming $\forall i A_{i} \neq O_{i}$, prove that the four lines $A_{i} O_{i}$ are concurrent or parallel.

Nikolai Ivanov Beluhov, Bulgaria

4 For a finite set X of positive integers, let $\Sigma(X)=\sum_{x \in X} \arctan \frac{1}{x}$. Given a finite set S of positive integers for which $\Sigma(S)<\frac{\pi}{2}$, show that there exists at least one finite set T of positive integers for which $S \subset T$ and $\Sigma(S)=\frac{\pi}{2}$.
Kevin Buzzard, United Kingdom

