AoPS Community

Romanian Masters In Mathematics 2011

www.artofproblemsolving.com/community/c3610
by mavropnevma

Day 1

1 Prove that there exist two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, such that $f \circ g$ is strictly decreasing and $g \circ f$ is strictly increasing.
(Poland) Andrzej Komisarski and Marcin Kuczma
2 Determine all positive integers n for which there exists a polynomial $f(x)$ with real coefficients, with the following properties:
(1) for each integer k, the number $f(k)$ is an integer if and only if k is not divisible by n;
(2) the degree of f is less than n.
(Hungary) Gza Ks
3 A triangle $A B C$ is inscribed in a circle ω.
A variable line ℓ chosen parallel to $B C$ meets segments $A B, A C$ at points D, E respectively, and meets ω at points K, L (where D lies between K and E).
Circle γ_{1} is tangent to the segments $K D$ and $B D$ and also tangent to ω, while circle γ_{2} is tangent to the segments $L E$ and $C E$ and also tangent to ω.
Determine the locus, as ℓ varies, of the meeting point of the common inner tangents to γ_{1} and γ_{2}.
(Russia) Vasily Mokin and Fedor Ivlev

Day 2

1 Given a positive integer $n=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$, we write $\Omega(n)$ for the total number $\sum_{i=1}^{s} \alpha_{i}$ of prime factors of n, counted with multiplicity. Let $\lambda(n)=(-1)^{\Omega(n)}$ (so, for example, $\lambda(12)=\lambda\left(2^{2} \cdot 3^{1}\right)=$ $\left.(-1)^{2+1}=-1\right)$.
Prove the following two claims:
i) There are infinitely many positive integers n such that $\lambda(n)=\lambda(n+1)=+1$;
ii) There are infinitely many positive integers n such that $\lambda(n)=\lambda(n+1)=-1$.
(Romania) Dan Schwarz

2 For every $n \geq 3$, determine all the configurations of n distinct points $X_{1}, X_{2}, \ldots, X_{n}$ in the plane, with the property that for any pair of distinct points X_{i}, X_{j} there exists a permutation σ of the integers $\{1, \ldots, n\}$, such that $\mathrm{d}\left(X_{i}, X_{k}\right)=\mathrm{d}\left(X_{j}, X_{\sigma(k)}\right)$ for all $1 \leq k \leq n$.
(We write $\mathrm{d}(X, Y)$ to denote the distance between points X and Y.)

(United Kingdom) Luke Betts

3 The cells of a square 2011×2011 array are labelled with the integers $1,2, \ldots, 2011^{2}$, in such a way that every label is used exactly once. We then identify the left-hand and right-hand edges, and then the top and bottom, in the normal way to form a torus (the surface of a doughnut). Determine the largest positive integer M such that, no matter which labelling we choose, there exist two neighbouring cells with the difference of their labels at least M.
(Cells with coordinates (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are considered to be neighbours if $x=x^{\prime}$ and $y-y^{\prime} \equiv$ $\pm 1(\bmod 2011)$, or if $y=y^{\prime}$ and $x-x^{\prime} \equiv \pm 1(\bmod 2011)$.)
(Romania) Dan Schwarz

