Art of Problem Solving

AoPS Community

Romanian Masters In Mathematics 2013

www.artofproblemsolving.com/community/c3612
by dr_Civot

Day 1 March 1st

1 For a positive integer a, define a sequence of integers x_{1}, x_{2}, \ldots by letting $x_{1}=a$ and $x_{n+1}=$ $2 x_{n}+1$ for $n \geq 1$. Let $y_{n}=2^{x_{n}}-1$. Determine the largest possible k such that, for some positive integer a, the numbers y_{1}, \ldots, y_{k} are all prime.

2 Does there exist a pair (g, h) of functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that the only function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x \in \mathbb{R}$ is identity function $f(x) \equiv x$?

3 Let $A B C D$ be a quadrilateral inscribed in a circle ω. The lines $A B$ and $C D$ meet at P, the lines $A D$ and $B C$ meet at Q, and the diagonals $A C$ and $B D$ meet at R. Let M be the midpoint of the segment $P Q$, and let K be the common point of the segment $M R$ and the circle ω. Prove that the circumcircle of the triangle $K P Q$ and ω are tangent to one another.

Day 2 March 2nd

1 Suppose two convex quadrangles in the plane P and P^{\prime}, share a point O such that, for every line l trough O, the segment along which l and P meet is longer then the segment along which l and P^{\prime} meet. Is it possible that the ratio of the area of P^{\prime} to the area of P is greater then 1.9 ?

2 Given a positive integer $k \geq 2$, set $a_{1}=1$ and, for every integer $n \geq 2$, let a_{n} be the smallest solution of equation

$$
x=1+\sum_{i=1}^{n-1}\left\lfloor\sqrt[k]{\frac{x}{a_{i}}}\right\rfloor
$$

that exceeds a_{n-1}. Prove that all primes are among the terms of the sequence a_{1}, a_{2}, \ldots
3 A token is placed at each vertex of a regular $2 n$-gon. A move consists in choosing an edge of the $2 n$-gon and swapping the two tokens placed at the endpoints of that edge. After a finite number of moves have been performed, it turns out that every two tokens have been swapped exactly once. Prove that some edge has never been chosen.

