AoPS Community

Belarusian National Olympiad 2008

www.artofproblemsolving.com/community/c362218
by RagvaloD

- Day 1
- \quad Prove, if $x^{2}+y=y^{2}+z=z^{2}+x$, then

$$
x^{3}+y^{3}+z^{3}=x y^{2}+y z^{2}+z x^{2}
$$

- $\quad A B C D$ - quadrilateral inscribed in circle, and $A B=B C, A D=3 D C$. Point R is on the $B D$ and $D R=2 R B$. Point Q is on $A R$ and $\angle A D Q=\angle B D Q$. Also $\angle A B Q+\angle C B D=\angle Q B D . A B$ intersect line $D Q$ in point P.
Find $\angle A P D$
- a)Find one natural k, for which exist natural a, b, c and

$$
a^{2}+k^{2}=b^{2}+(k+1)^{2}=c^{2}+(k+2)^{2}(*)
$$

b)Prove, that there are infinitely many such k, for which condition (*) is true.
c) Prove, that if for some k there are such a, b, c that condition (*) is true, than $144 \mid a b c$
d)Prove, that there are not such natural k for which exist natural a, b, c, d and

$$
a^{2}+k^{2}=b^{2}+(k+1)^{2}=c^{2}+(k+2)^{2}=d^{2}+(k+3)^{2}
$$

- \quad Find maximal numbers of planes, such there are 6 points and

1) 4 or more points lies on every plane.
2) No one line passes through 4 points.
```
- Day 2
```

- \quad For $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ prove

$$
\frac{x_{1}\left(2 x_{1}-x_{2}-x_{3}\right)}{x_{2}+x_{3}}+\frac{x_{2}\left(2 x_{2}-x_{3}-x_{4}\right)}{x_{3}+x_{4}}+\ldots+\frac{x_{n}\left(2 x_{n}-x_{1}-x_{2}\right)}{x_{1}+x_{2}} \geq 0
$$

- Point O - center of circle ω. Point A is outside ω. Secant goes through A and intersect circle in points X and Y. Point X^{\prime} is symmetric for point X with respect to line $O A$. Prove, that point of intersection of $O A$ and $X^{\prime} Y$ is independent from the choice of secant.
- $\quad a, b, c$ - are sides of triangle T. It is known, that if we increase any one side by 1 , we get new
a) triangle
b)acute triangle

Find minimal possible area of triangle T in case of a) and in case b)

- \quad Find all pairs $(n, m) m \geq n \geq 3$, for which exist such table $n \times m$ with numbers in every cell, and sum of numbers in every 2×2 is negative and sum of numbers in every 3×3 is positive.

